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Abstract

A model for the credit risk of a portfolio of market driven �nancial contracts (for

example swaps) is introduced. The viewpoint of the �nancial institution who holds

this portfolio is taken. The default intensity of a single counterparty is assumed to

write as a sum of two parts: An individual component is unknown and modelled

as noise, the collective component is known and dependent on market variables

(like the interest rate). The in
uence of the credit events to the market variables

is neglected. The advantage of this model is given by the possibility to consider

the statistic of the credit events conditioned on a market situation. By taking a

functional like the expectation value of this conditional statistic only the market

variables remain stochastic. Therefore this model is especially suited for measuring

the impact of the market variables onto the credit risk.
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0 Introduction

In the last year severe crises in the worldwide �nancial markets shook the con�dence in the

management of market and especially credit risk. One of the most prominent examples

was given by the LTCM Hedge Fund which got into deep �nancial struggle because of a

misspeci�cation of the models for the credit spreads. This became dangerous in the case

of Russian bonds: The quasi-default of the Russian bond issuers lead to the total failure

of these models and with this of the risk management of LTCM. In this case it became

obvious that the success of risk management is very dependent of the modelling of the

risks involved.

In this light even the credit risk of a portfolio of simple bonds appears di�cult to handle

(We take always the view of the �nancial institution which holds this portfolio). How

to put together the values of the outstanding contracts (i.e. the exposure) which are

held by the di�erent counterparties? How to bring in the di�erent default probabilities

of the single counterparties? How to take the correlation between default events into

consideration? There is no standardized approach to this problem.

With CreditMetrics and CreditRisk+ (see J.P.Morgan (1997) and CreditSuisse (1997))

two theoretical frameworks are presented, which address this problem. While CreditRisk+

is an analytically solvable actuarial approach, CreditMetrics relies on Monte Carlo simu-

lation techniques to estimate the possible losses due to default events. As seen by prac-

tioners, both of these models are not easy to implement. For instance a lot of data about

correlations between default events of several counterparties is needed to calibrate the

so-called \�rm-value" approach of CreditMetrics. The assumptions in the CreditRisk+

framework are also not easy to justify from the practical point of view.

The situation is even more di�cult if one deals not only with simple contracts like bonds

but also with instruments like derivatives whose values depend highly on market variables.

Not only the \pure" credit risk of such contracts has to be regarded but also the behaviour

of the value of these contracts under changes of these market variables. For example, a

swap will have a positive or a negative value in dependency of the changes of the interest

rate. The default of the counterparty in the swap contract might therefore lead to no loss

or a severe loss depending on the actual value of the interest rate. Neither CreditMetrics

nor CreditRisk+ do incorporate these market variables in a natural way. Both of them

might be extended to capture market variables, but would lose their analytical tractability

or numerical elegance. It is still usual to apply \rules of thumb" in regard to the credit

risk of market-driven instruments.
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Usually credit risk management models these two \kinds" of risks as independent stochas-

tic variables: Market variables do not in
uence the credit risk and vice-versa. This

\independence assumption" simpli�es the analysis of the credit risk of market-driven in-

struments, because one can treat the di�erent risks separately. This subdivision into

\market" and \credit risks" is deeply embodied in the thinking about risk management.

This is re
ected in the organization of �nancial institution where mostly one section cares

about the credit risk, and another section about the market risk.

But are there really two di�erent kinds of risk? A change of the market situation might

also change the �nancial standing of some counterparties and with this the credit risk of

these counterparties. In Du�ee (1996a) the independence assumption is discussed with

examples of market-driven contracts like swaps. In such contracts which are driven by the

change of a market variable and which are subject to credit risk the distinction between

market and credit risks becomes uncertain.

As Du�ee (1996a) states the independence assumption is di�cult to justify even in \nor-

mal" market situations. But in extraordinary market situations this assumption is dan-

gerous because the probability that the credit risk of the counterparties changes with the

market is very high. And these are the situations risk management should account for. In

such extreme situations the failure of the independence assumption is unavoidable. For

instance, due to extraordinary changes of the interest rate �nancial institutions might get

into di�culties and the credit risk of these institution will increase dramatically.

However the consideration of dependent credit and market risks is very di�cult: In ad-

dition to the modelling of the credit risk for each counterparty one has to model also

the correlation with the market variables. There are several di�erent possibilities to do

this: One could model the value of the assets of the counterparties. This \�rm-value"

should be dependent of the market variables. Or one models the default intensity as

variable with the changes of the market situation. But the defaults could also change the

market variables which further complicates the modelling. In realistic cases usually by

introducing some kind of correlation the analytical tractability is lost.

But even numerically there are di�culties to take account of the correlation between

default und market risks. Given a large portfolio of maybe 10000 counterparties, it is

complicated enough to simulate such a great number of counterparties which might default

or not, even if the default probabilities are �xed, see Du�e and Singleton (1998). If these

default probabilities depend on other factors which have to be simulated too, some of the

elegant treatments of the simulation of default times are no more applicable. And the
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requirements for computing power and time are very large in a \brute force" Monte Carlo

simulation approach. If the simulation of the credit risk of a large portfolio has also to be

considered over a long time interval, these requierements grow further which the number

of time steps involved.

And, at last, even if these models are implemented numerically, it is necessary to estimate

the parameters of these models. Proxies for default probabilities might be given by the

ratings (for instance of Moody's or Standards & Poor). But there is a lack of reliable

data about how these default probabilities are e�ected due to the correlations to market

variables. So the calibration of the models parameters in regard to the interaction between

market and credit risks is di�cult too.

In this paper a simpli�ed approach is proposed to handle some of the problems mentioned

above. The most important feature of this model is the modeling of the credit risk (i.e.

the default probability) of a single counterparty as the sum of two components: One

component describes the individual contribution of the considered counterparty to its

credit risk. This idiosyncratic risk is not in
uenced by movements in market variables.

In opposite to this the other component describes the change in the default probability

due to changes in the market variables, like the interest rate. This component is therefore

called the collective or systematic contribution to the credit risk.

Given an initial rating for one counterparty this approach allows to adjust the default

probability to a changed market situation by the systematic compenent. The \o�cial"

rating by some rating agency is mostly too \sticky", which means that the rating is

adjusted too late, cp. D�ullmann et al. (1998). The systematic component gives an

instantaneous re-adjusted default probability, which is in agreement with empirical results,

cp. Fons (1994).

The crucial point of this model is that the idiosyncratic component is assumed to be

unknown to the considered �nancial institution. It is therefore modeled as \noise". This

noise prevents from calculating an e�ect of a change of the credit risk on the market vari-

ables by considering the mathematically reversed relationship. With this the \causality"

of this model is determined: The market risks in
uence the credit risks, but not vice-versa.

This model of a \one-sided" dependency between market and credit risks takes a position

between models with \full" dependency (which are far more di�cult to handle) and

models which incorporate the assumption of the independence. The simpli�cation due to

this one-sided dependency is the possibilty of considering the credit events conditioned

on a �xed market situation. With the market variables �xed, only the stochasticity of
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the individual risks remains1. In this situation one can take the conditioned expectation

value (or another functional as the upper percentile) of the individual risks to obtain the

expected loss of a portfolio due to defaults given a market situation2. By varying this

market situation one can use the model for measuring the impact of this movements in

market variables onto the credit risk: Only a simulation of the market variables has to be

performed to determine the conditioned expected loss due to credit events, no simulation

of the default processes is required.

In this model the in
uence of the credit events on the market is neglected. This may be

a severe neglection if for example due to the default of a larger amount of counterparties

the spread on bonds widens in the whole market as it was the case in the Russian crises

mentioned at the beginning of this paper. But this will primarily e�ect bond prices,

the e�ects on prices of market-driven instruments as swaps for example might be much

smaller.

This model is suited for di�erent applications. The determination of the risk-based capital

is maybe the most important one and discussed in detail with several simulation studies

in Barth (1999). Another application would be the calculation of spreads for di�erent

sorts of contracts. The emphasis should lay on the tracking of the market variables.

In the �rst chapter the model is presented and discussed. One of the most important

features is the modelling of the default risk. A \response function" of the credit risk due

to the changes in the market risks is introduced. The modelling of this response function

and its calibration with empirical data is discussed in the second chapter.

1 The Loss Process

1.1 De�nition

We consider a �xed number of N counterparties a = 1; : : : ; N in the time interval [0; T ].

The netted value of the contracts which are traded with counterparty a is denoted by Va.

We assume netting of all the contracts with one counterparty, but netting is not applied

between di�erent counterparties. We call V +
a (t) the exposure to counterparty a at time

1 An investigation of a similar situation in a micro-economic context is given in Berninghaus (1977).

2 If there is a large number of individual risk, an application of the Law of Large Numbers might appear

as appropriate to eliminate the indiviual risks instead of taking the expectation value. This will be

reported in a later version of this paper.
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t 2 [0; T ], where (�)+ = max(0; �). It should not be possible that the considered �nancial

institution achieves a gain through the default of a counterparty. The consideration of

the exposure alone might be suited for the setting of risk limits, but not for a quantitative

analysis of the credit risk of a portfolio.

The event of a default of one counterparty a is modelled as each jump of a Poisson process

Na with stochastic intensity �a. The stochastic intensity �a is speci�ed in the next section.

Here we take �a as given and concentrate on the modelling of the default events and the

associated losses.

We introduce the default indicator process dNa as

dNa(t) = lim
�t!0

(Na(t)�Na(t��t)) : (1)

Let f�a;igi=1;:::;Ma be the set of jump times of the Poisson process Na in the time interval

[0; T ], where Ma is the number of the jump times of counterparty a in [0; T ]. Then dNa

can be rewritten as

dNa(t) = lim
�t!0

1f�a;i2[t��t;t)g (2)

for one i = 1; : : : ;Ma.

With the modelling of the default event as each jump of Na it follows that counterparty

a might default more than one time in [0; T ], i.e. Ma > 1. This approximation is

usually done in many applications in risk management and is known as the \Poisson

approximation", cf. for example CreditSuisse (1997). The probability for Ma > 1 is in

quadratic order of the total default probility of counterparty a in [0; T ] and therefore very

small for realistic parameters in credit-risk management. Without this approximation the

default time has to be regarded as a �rst-passage time of Na, which is analytically di�cult

to handle.

With these remarks3 the discounted credit loss dL(t) in the time interval [t� dt; t) writes

as (cp. for a similar approach Albrecht et al. (1996)):

dL(t) =
1

B(0; t)

NX
a=1

V +
a (t)dNa(t); (3)

where B(t1; t2) is the money market account, i.e.

B(t1; t2) = exp
�Z t2

t1

r(s)ds
�
; (4)

3 We only consider the total loss of the value of the exposure in the default case. The model might be

easily extended to incorporate loss fractions smaller than 1.
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with r(t) as the riskless interest rate at time t 2 [0; T ]. The loss in the whole time interval

[0; T ] is obtained by

L(t) =
Z t

0
dL; (5)

where the integral is de�ned for each realisation of dNa (a reference for such random

measures can be found in Daley and Vere-Jones (1988)). L(t) can be rewritten as

L(t) =
NX
a=1

MaX
i=1

1

B(0; �a;i)
V +
a (�a;i); (6)

where the characteristic function eq.(2) is used with the jump times f�a;igi=1;:::;Ma.

With dt in�nitesimal the expectation value of dNa can be written as

E [dNa(t)] = Prob fdNa(t) = 1g

= Prob f�a 2 [t� dt; t)g

= Prob fNa(t) = 1jNa(t� dt) = 0g

= �a(t)dt: (7)

The expression �a(t)dt gives the probability that the default event takes place in the time

interval [t� dt; t).

Another modelling approach would be to consider the (unconditioned) Poisson process

Na(t) instead of dNa(t) in eq.(3). We do not consider this possiblity in this paper, because

in regard to the exposure Va at time t the probability of default in a small time interval

prior to t is important, not the probability of default in [0; t].

1.2 Modelling the Risks

In most of the models which deal with the credit risk of market-driven contracts the

default process and the market risk process are assumed to be independent. But this

assumption is di�cult to justify, cf. Du�ee (1996a), Hull (1989). However it is di�cult to

overcome this assumption, because there is only little information and data for estimating

a correlation between market and credit risks. In this section we describe one possibility

for incorporating this correlation. Here we describe only the theoretical model, for matters

of calibration and estimation of this model we refer to chapter 2.

We model a \one-sided dependency": The market variables should be \independent" of

the credit risks, but the credit risks could be in
uenced by the market variables. For
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example, a rise in the interest rate might worsen the credit qualtity of many �rms, but a

single \downgrading" does not in
uence the interest rate4.

To do this, we distinguish two \sorts" of risks: First there are \systematic risks" like

market variables, which are known to everybody. In chapter 2 we regard only the interest

rate r as a systematic risk, here r can be a vector of market variables which are assumed

to be important in the application of the model. Second there are \individual risks",

which are not common knowledge: In the following we regard as the individual risk of

counterparty a the �nancial state, which is not known exactly to the considered �nancial

institution. We model this uncertainty about this �nancial state at time t as a random

variable �a(t) with a known distribution, see below.

Further we model the credit risks as a function of the market risk r and the residual

individual component �a. Here we consider as the credit risk of counterparty a the intensity

�a of the default process Ia, which we assume has the following form:

�a(t) = Sa(r(t); t) + �a(t); (8)

with a well-behaved function Sa : R+ � R ! [la;1), which remains to be modelled,

see chapter 2. Sa(r(t); t) is the known default intensity of counterparty a in the market

situation r(t). We will refer to Sa as the \response function", because it describes the

changes in the credit risks due to changes in the market variables r. The constant la > 0

gives a lower bound for this intensity. It is one of the fundamental assumptions in this

paper that this function is only dependent on the actual value of r, not on the path of r up

to this time. The residual �a : R+ ! [�la;+la] models the di�erence of the \true" default

intensity �a and the o�cial rating Sa(r(t); t), which is given for instance by Moody's. Sa

describes the spread in the interest rate due to the known default risk of counterparty a

against a riskless interest rate. This point will be getting more clear in the next section.

We model the individual risk �a as di�usion process without any drift. With this assump-

tion the doubly stochastic process Na based on eq.(8) is well-de�ned, cf. Grandell (1976).

One important condition is the independence of �a of the market-parameter processes r.

Moreover the individual risk processes f�aga=1;:::;N should be pairwise independent for all

a 6= a0.

4 There will be di�erent opinions if this approximation works very well in the case of a worst case

scenario (which will be studied in fact), because in worst case scenarios there might be in
uences of

the defaults on the level of the interest rate. But we think, that this approximation works better

than the \traditional" independence assumption between market und default risks. Even numerically

a model which incorporate the \full" dependency will be much more computing-intensiv.

8



Further we assume, that the drift and the volatility function of the di�usion process �a is

\common knowledge", i.e. the marginal distributions of �a(t) for all t 2 [0; T ] are known

to the considered �nancial institution. We state several conditions on these distributions:

The assumption, that the processes of the �a are without drift results in E[�a(t)] = 0 for

all a and t. Without this assumption there would be an expected di�erence between the

known spread Sa and the default intensity �a at some time t 2 [0; T ]. Such an expected

di�erence would be incorporated to the spread Sa by the rating agency. Besides it should

be excluded that �a < 0: Therefore we restrict �a to the interval [�la; la] by cutting o�

values which are outside of the interval5.

1.3 Treatment of the Exposure Process

The application of a straightforward pricing model for calculating the exposure Va neglects

the fundamental information asymmetry, which is responsible for the modelling of the

default process as a Poisson process, cf. Du�ee (1996a). Therefore the pricing models

have to be modi�ed for the use in a \world with default". One approach is given by

the work of Du�e and Singleton (1995): The riskless interest rate r is replaced by a

modi�ed interest rate6 Ra(t) = r(t) + �Qa (t) under the equivalent martingale measure Q.

The spread �Qa is given by the default intensity under the equivalent martingale measure

Q of the considered counterparty. Then the exposure writes as7:

Va(t) = EQ

"
exp

 
�
Z T

t
Ra(s)ds

!
Z(r(T ))jFt

#
: (11)

5 We try to keep the notation simple. To be strict, one has to write instead of eq.(8)

�a(t) = Sa(r(t); t) +Ca(�a(t)); (9)

with a cut-o� function

Ca : R! [�la; la]; �a(t) 7!

8>><
>>:

la if �a(t) > la;

�a(t) if �a(t) 2 [�la; la];

�la if �a(t) < �la:

(10)

Because of its symmetry this function Ca does not a�ect the property E[Ca(�a(t))] = 0, if the marginal

distributions of the process �a are symmetric themselves.

6 If a loss rate La(t) < 1 is considered, one has to write for the modi�ed interest rate Ra(t) = r(t) +

La(t)�
Q
a (t).

7 This formula is valid only if there is one contract with counterparty a which pays Z(r(T )) at time T ,

otherwise it must be summed over the di�erent contracts und times of payo�s.
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Using eq.(8) and separating the expectation value because of the independence of r and

�a:

Va(t) = EQ

"
exp

 
�
Z T

t

�
r(s) + SQ

a (r(s); s)
�
ds

!
Z(r(T ))jFt

#
�

EQ

"
exp

 
�
Z T

t
�Qa (s)ds

!
jFt

#
: (12)

The �ltration F describes the development of the information of the considered �nancial

institution.

With the expression

EQ

"
exp

 
�
Z T

t
�Qa (s)ds

!
jFt

#
(13)

the stochastic part of the individual risks is eliminated from the pricing formula. Expres-

sion eq.(13) could be evaluated because the distribution of the � and the transformation

of the real measure to the equivalent martingale measure Q is known8. By de�ning

fQa (t; T ) = � lnEQ

"
exp

 
�
Z T

t
�Qa (s)ds

!
jFt

#
(14)

one could write9

EQ

"
exp

 
�
Z T

t
�Qa (s)ds

!
jFt

#
= exp

�
�fQa (t; T )

�
: (16)

By inserting eq.(16) into eq.(12)

Va(t) = exp
�
�fQa (t; T )

�
EQ

"
exp

 
�
Z T

t

�
r(s) + SQ

a (r(s); s)
�
ds

!
XT jFt

#
; (17)

the term fQa (t; T ) is identi�ed as an additional contribution to the spread SQ, which can

be interpreted as a premium, which has to be payed because of the uncertainty about the

individual risk of the counterparty a in the time interval t 2 [0; T ].

8 The switching between the intensity under the real measure Sa and the intensity under the equiva-

lent martingale measure SQa can be done by the Girsanov transformation for Poisson processes, but

empirically established connections exists too, cf. Fons (1994).

9 It is maybe convenient to approximate eq.(16) with a zero-order approximation (so that fQa has not

to take into account), but this is not necessary here:

EQ

"
exp

 
�

Z T

t

�Qa (s)ds

!
jFt

#
� 1: (15)

This approximation is equivalent to the neglection of the in
uence of the individual risks �a to the

pricing of the contract.
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The most important point of this calculation is that the stochasticity of the individual

default risks does not in
uence directly the pricing of the contracts, which makes sense

from the economic point of view, because only the known quantities Sa and fa should

enter into the valuation formula. In a practical implementation one would use instead

empirically determined spreads which also account for other determinants as liquidity and

sector e�ects not included in this theoretical approach.

1.4 Treatment of the Default Process

dNa describes the indicator of a jump of a Poisson process Na with a stochastic intensity

�a(t) = Sa(r(t); t)+ �a(t), i.e. a doubly stochastic process or Cox process. This process is

di�cult to handle both analytically and numerically. But this process is responsible for

the \weights" of the di�erent exposures of the counterparties in regard to the credit risk

of the entire portfolio. Therefore it is necessary to obtain an expression which is easier to

handle.

In the approach of CreditMetrics the market risk is taken into account by regarding only

the average exposure or the maximum exposure. The random variable V +
a (r(t); t) is re-

placed by an expected value (as the average) or an upper percentile (as the maximum)

over the time interval t 2 [0; T ]. This eliminates the dependency of the market stochas-

ticity which is given by r. Then this average or maximum exposure is regarded as a �xed

quantity and treated like the nominal value of a bond.

In contrast to the approach of CreditMetrics we concentrate on the e�ects of the market

variables on the credit risks by using the response function Sa(r) in eq.(8). We take an

expectation value of the credit risks instead of the market risks. This expectation value

is conditioned on the market risk situation which is in this context given by the interest

rate r. This approach is the opposite to the approach of CreditMetrics with respect to the

treatment of the credit and market risks: The individual components of the credit risk

�a are eliminated by taking the expectation value, while only the market-driven collective

component Sa(r) of the credit risk remains.

By taking the expectation value of eq.(3), conditioned on a �xed market scenario r

E [dL(t)jr(t)] = E

"
NX
a=1

V +
a (t)dNa(t)jr(t)

#
(18)

and by calculating (for ease of notation we suppress the dependency of r)

E
h
V +
a (t)dNa(t)jr(t)

i
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= V +
a (t)E [dNa(t)jr(t)]

= V +
a (t)E [E [dNa(t)j�a(t)] jr(t)]

= V +
a (t)E [�a(t)dtjr(t)]

= V +
a (t) [Sa(r(t); t)dt+ E [�a(t)]]

= V +
a (t)Sa(r(t); t)dt; (19)

the default process is eliminated. Only the market risk process remains as a source of

uncertainty.

If one is interested in analyzing the impact of the market variables on the credit risk, one

might consider the conditional expectation value of the loss process, which writes as

E [dL(t)jr(t)] =
NX
a=1

V +
a (t)Sa(r(t); t)dt (20)

instead of examining the loss process eq.(3) itself. The \weights" Sa(r(t); t)dt represent

the known probability of default in the time interval [t� dt; t). This expression is much

easier to handle in comparison to eq.(3), because only the stochasticity of r remains to

be considered (analytically or numerically).

In addition to the expectation value the variance can be considered. The conditional

variance of the default process of the single counterparty a is calculated as

Var
h
V +
a (t)dNa(t)jr(t)

i
= (V +

a (t))2
h
Sa(r)dt� Sa(r)

2dt2
i

= (V +
a (t))2 [Sa(r)dt] : (21)

The conditional variance of the total portfolio writes as the sum of the single variances,

because the default processes Ia are independent for a = 1; : : : ; N conditioned on a market

scenario r(t):

Var

"
NX
a=1

V +
a (t)dNa(t)jr(t)

#

=
NX
a=1

(V +
a (t))2

h
Sa(r)dt� Sa(r)

2dt2
i

=
NX
a=1

(V +
a (t))2 [Sa(r)dt] : (22)

It depends of the kind of application of this model in which sense the variance has to be

regarded. Again the important point is the elimination of the individual default charac-

teristic �a.
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In the case of a large portfolio one might think about the Law of Large Numbers to

eliminate the individual default stochastics. This will lead to the same result eq.(20),

but the interpretation would be a stronger one: Instead of seeing eq.(20) as the expected

loss conditioned in a given market scenario, eq.(20) would be the real loss in this market

situation. No variance has to be regarded. Compare also to the application of the Law of

Large Numbers in the \large economy" in Berninghaus (1977), where a similar distinction

of risks is introduced and conditional arguments are used the same way. But unfortunately

the Law of Large Numbers is not applicable because in eq.(3) an addition of the indiviual

risks is considered instead of a subdivision, i.e. the factor 1=N is missing. The application

of the Law of Large Numbers is not valid in this case.

But investigations of Nielsen (1985) and Hellwig (1995) justify the use of large number

arguments for the addition of individual risks. The most striking result of these investi-

gations is that even risk-averse agents do not consider the growing variance which arise

by the addition of risks and take only the expectation value of the sum of the risks into

account for their decisions (under mild restrictions on the utility functions of the agents).

The application of these results in regard to the problems in this paper are currently

under way und will be reported in a later version of this paper.

1.5 Comparison to the Approaches of CreditMetrics and Cred-

itRisk+

In this section a short comparison of the model described here and the framework of Cred-

itMetrics (J.P.Morgan (1997)) and CreditRisk+ (CreditSuisse (1997)) is given. A useful

comparison of the structural similarities and di�erences of CreditMetrics and CreditRisk+

is given in Gordy (1998).

CreditMetrics is a so-called \�rm value" model: A latent variable ya describes the value

of the assets of a counterparty a. If ya drops under a certain lower barrier da (which might

depend on the rating of the �rm), the counterparty defaults. In opposite to this approach

the model decribed in this paper is an \intensity-based" model: With eq.(8) the default

intensities are modeled rather than the �rm value. In Gordy (1998) it is shown that the

�rm value approach of CreditMetrics can be transformed into an intensity approach, but

the resulting intensity is (with �xed market parameters) determinstic, while the intensity

eq.(8) is stochastic due to the noise of the individual credit risks.

But in CreditMetrics the structure of the latent variable ya is modeled similar to the

model described here: As Gordy (1998) notes, ya writes as a sum of weighted random risk
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factors plus an individual noise term. The interpretation of these terms is similar to the

interpretation of these terms in the model of this paper. The risk factors in CreditMetrics

could be stock indices of di�erent industry sectors and the weights of these risk factors

give the composition of the dependency of the considered counterparties of these sectors.

In opposite to this we model a response function to market variables (as the interest rate).

This response function could have a more complicated structure than the linear structure

of a weighted sum. Mostly the risk-factors in CreditMetrics are assumed to be normally

distributed while in this model the response function maps the actual value of the market

variables.

The �rm-value approach in CreditMetrics allows for multi-state outcomes (as it is needed

to model rating migration), an intensity approach only allows the events \no default"

or \default". This is the case with the model described here and the approach of Cred-

itRisk+. Both are intensity-based models; multi-state outcomes are not possible.

CreditRisk+ and the model of this paper are similar in that the correlation between

defaults of several counterparties are triggered by some underlying variable. Further the

idea of modelling the intensity function based on underlying risk factors is a common

feature. In CreditRisk+ these risk factors are weighted and summed and then multiplied

with the initial default probability, which might be given by the rating of the considered

counterparty. This is a special kind of a response function. The intensity function in

the model described in this paper is modeled similarly: Instead of the weighted sum the

risk factors are mapped by a more general response function Sa. This response function

will be gauged so that the initial con�guration of the risk factors give the initial default

probability induced by the o�cial rating. Beyond that a noise term is added to model

the individual risk compenent, so that a stochastic volatility results. In this model the

noisy term is important for the economic \causality" of market and credit risks. This

noisy term is not incorporated in the model of CreditRisk+, where only the systematic

component is regarded10.

There are some further di�erences: CreditRisk+ is trimmed to be analytically solvable.

To succeed it is necessary to assume, that the risk factors are Gamma distributed. Further

the exposures and losses have to be multiplicates of a standard unit of exposure or loss.

In CreditRisk+ probability generating functions are considered to give analytical solu-

10 In CreditRisk+ only bonds instead of market-driven instruments are regarded. There is no common

factor which drives the default probability and the exposure (as it is the case in the model described in

this paper). Because of this there is a trivial independence of the exposures and the market variables.

Therefore no modelling of the \causal" relationship between these risks is required.
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tions. These assumptions are not made in the model of this paper, because the analytical

tractability was not the primary objective.

Instead the model described here is trimmed to follow the changes of the market variables

over a given time interval. This is not the case for both CreditRisk+ and CreditMetrics:

Both concentrate on the credit risks in a �xed market situation (which might be the best

way if only bonds are regarded), while the model of this paper concentrates on the e�ects

of the market variables by \eliminating" the individual credit risk components by taking

the expectation value conditioned on the market. But the modelling of the response

function Sa has not yet be discussed, this will be done in the next chapter.

2 Modelling the Correlation

In chapter 1, a model was introduced which captures e�ects of the correlation between

market variables and the default intensity. In this chapter, we specialize to the consid-

eration of the interest rate r as a market variable. We assume that there are no other

market variables than r which are important to consider. Certainly in every realistic sit-

uation there will other variables. But here we will try to calibrate the model described in

chapter 1 in the simplest case. An extension to other market variables is straightforward,

if emprical data is available.

We �rst review some related economic topics which concern interactions between changes

in the interest rate and default probabilities. There exist some theoretical models where

such an interaction might be included. These are reviewed shortly thereafter. After that

several possibilities to model such a correlation in terms of the response function Sa (see

eq.(8)) are proposed. Empirical evidence for choosing the parameters of this response

function is discussed at the end of this chapter.

2.1 Economic Surroundings

There are many ways in which a change in the term structure of interest rates could

in
uence the �nancial standing and with this the default probability of a �rm (which

might be one counterparty in the considered portfolio). For example, a rise of the short

rate leads directly to a rise of the costs of short rate debt. Firms which are exposed to

short rate debt are in this situation more likely to get into �nancial di�culties. In this

case Sa(r) (see eq.(20), we drop the explicit time dependency in the notation) will be an
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increasing function in r(t) with Sa(r) ! 1 for r ! 1. For r ! 0 one would expect

Sa(r) ! ca with ca > 0 a constant, maybe dependent on a. One could interpret this

constant ca as the default intensity of a which is independent of the interest rate.

As an example for a more indirect in
uence Estrella and Hardouvelis (1991) give empir-

ical evidence, that a positive slope of the yield curve is a predictor of a future increase

of economic activity. This growth in economic activity will strengthen the �nancial sit-

uation of some �rms which induces a lower default probability. A 
attening of the yield

curve predicts falling economic activity. On average this reduces the �nancial standing of

individual �rms.

These examples illustrate the problems of modelling the correlation between the interest

rate and the default probability: First, not only the single �rm is in
uenced directly, but

also the economic surroundings which will in
uence this �rm indirectly again. Second,

di�erent �rms might react di�erently to changes in the interest rate. A third problem is

given by the di�culties to estimate the default probability which are reviewed later.

2.2 Theoretical Models

There are some theoretical models for pricing the credit risk which allows for a correlation

of the default probability with the interest rate. In opposite to these models we am not

interested primarily in pricing this risk. We give a very short and incomplete survey of

some of these models.

Cooper and Mello (1991) provide a �rm value model for pricing the default risk of currency

and interest rate swaps. The process of the value of the �rm and the interest rate process

are correlated. The swap rates are related to debt market spreads. They �nd that the

swap spread is inversely proportional to the correlation parameter. In the case of risky

bonds Longsta� and Schwartz (1995) present another �rm value model. They �nd that

the credit spread is in
uenced by the correlation between the assets of the �rm and the

interest rate. This might give an explanation for the di�erent yield rates between �rms of

di�erent industry sectors with the same credit rating. Another theoretic �nding is that

the credit spreads are negatively correlated to the level of the interest rate.

In opposite to the �rm value models there are \reduced form" models, which regard an

exogenously given hazard rate process instead of a �rm value process. Du�e and Singleton

(1995) value risky bonds in such a model where the hazard rate process might depend on

market variables. The yield spread due to the default risk is given by the intensity of the

hazard rate process times the loss rate, but there might be other determinants of the yield
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spread. The advantage of this approach is that the well-known pricing models without

default risks remain structurally the same, only the interest rate is modi�ed under the

equivalent martingale measure (see section 1.3). In Du�e and Huang (1996) this model

is extended to value the credit risk of swaps. Again the default characteristics are allowed

to be in
uenced by market parameters.

2.3 Response Functions

We will describe the technique and the results of several simulations of a portfolio of in-

terest rate swaps in Barth (1999), where the (known) default intensities Sa are dependent

of the short rate r. Several di�erent response functions Sa are implemented. Though

the form of this function is somewhat arbitrary (and might depend on the speci�c coun-

terparty) there is some empirical evidence which might give hints not for choosing the

functional form of Sa but for choosing the parameters if such a function is proposed. In

the following we will discuss several functions Sa before listing some empirical results.

To be consistent with the model presented in chapter 2, We have to assume that only

the actual value of r is responsible for the default intensity Sa, i.e. there should be no

path dependency. Therefore the same Sa(r(t); t) results regardless if there is a slow rise of

the interest rate r in [0; t] or a sudden increase (followed by a calm period for instance).

Sa(r(0)) is given by the rating of a at the starting time t = 0.

As the �rst possibility we modify the function used by Hull (1989)11 and obtain

Se
a(r(t)) = Se

a(r(0)) exp [ka (r(t)� r(0))] ; (23)

with a counterparty-speci�c constant ka and a starting value Sa(r(0)) for the known

default intensity. We will call ka the response coe�cient. This function is displayed in

�gure 1. Hull uses a time-averaged r instead of r(t) which leads to a path dependency.

Further he introduces an explicit time dependency by multiplying the exponent by t,

which results in a dependency on the strength of the correlation given a �xed k on the

chosen time period. This is not the case in our application. We avoid this explicit time

and path dependency. This has the advantage of a multiplicative structure concerning

the intensities. Only the parameter ka is left to be chosen.

In the �rst order approximation of eq.(23) the interpretation of ka is straightforward:

Se
a(r(t)) = Se

a(r(0)) [1 + ka (r(t)� r(0))] +O
�
(r(t)� r(0))2

�
: (24)

11 To our knowledge the only other investigation with an explicit modelling of such a function.
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Given a change of one percent in the interest rate r(t)� r(0) = 0:01, the default intensity

changes by ka percent of the initial value Se
a(r(0)).

0 5 10 15 20
0

2

4

6

8

Figure 1: Correlation functions for ka = 16 and r(0) = 0:05 and Sa(r(0)) = 1: Exponential

eq.(23) (checks), quadratic eq.(25) (stars), linear eq.(26) (squares), and square-root eq.(27)

(triangles). The value of the correlation function S is plotted versus r.

If one regards one realisation of the short rate process, the resulting \paths in default

intensity" Sa(r(t); t) might be compared with the empirically tracked one year default

probabilities in Fons (1994): They look nearly the same, if one is willing to believe that

the only driving force for a change in the default probability is the interest rate (as it

is assumed in this paper): For companies which are rated investment-grade these paths

are nearly 
at at a �xed level. This situation corresponds to a very small ka in eq.(23).

For companies with speculative-grade rating these paths are much more volatile and

correspond therefore to a high ka.

Other function Sa which we use in Barth (1999) are quadratic, linear, and square-root

functions (slightly modi�ed not to be symmetric or hit 0) and displayed in �gure 1:

Sq
a(r(t)) = Sq

a(r(0))
�
1 + max

n
0; sgn (ka(r(t)� r(0))) (ka(r(t)� r(0)))2

o�
; (25)

Sl
a(r(t)) = Sl

a(r(0))max f1; 1 + ka (r(t)� r(0))g ; (26)

Sr
a(r(t)) = Sr

a(r(0))
q
maxf1; 1 + ka (r(t)� r(0))g: (27)
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In all these functions only the unfavourable market move ka(r(t)�r(0)) > 0 (as seen from

the counterparty) leads to a larger default probability. In the \good" case ka(r(t)�r(0)) <

0 the default probability does not change. These functions are introduced to exclude the

possibility that some results of the numerical investigation are driven only by the fast

exponential growth of the correlation function eq.(23).

2.4 Empirical Estimations

The credit rating alone is not a very reliable measure for the default probability. In many

cases the yield spread of corporate bonds issued by the regarded �rm will give a better

estimate: Du�e and Singleton (1995) have shown one example for the variations of the

yield rate of a �rm with a constant credit rating. The yield spread of corporate bonds to

treasury yields is determined partly by the expected default probability of the considered

�rm. There are also other determinants for the magnitude of the yield spread, for example

liquidity and industry speci�c e�ects. Du�ee (1996b) reports that �rms which belong to

di�erent industry sectors show di�erent yield spreads even when they are rated equally.

It would be necessary to eliminate these other determinants to get an unbiased estimate

of the default probability based on the yield spread.

To our knowledge there are only three empirical investigations of the correlation between

the interest rate and the spread (which we regard as a proxy for the default probability):

Longsta� and Schwartz (1995), Du�ee (1996b), and D�ullmann et al. (1998). All three

consider the yield spread between corporate and treasury bonds as a proxy for the default

risk. By accepting this proxy we assume with the existence of Sa that the term structure

of yield spread is 
at, because Sa does not depend on the maturity. This is a good

approximation for longer maturities. Longsta� and Schwartz (1995) and Du�ee (1996b)

consider the US bond market while D�ullmann et al. (1998) consider Deutschemark-

denominated bonds.

All three regress the change in the yield spread on the change in the interest rate. Du�ee

(1996b) and D�ullmann et al. (1998) add a proxy for the slope of the term structure.

Furthermore Du�ee (1996b) and D�ullmann et al. (1998) are more careful with eliminating

other determinants of the yield spread (for example tax and liquidity e�ects) in order to

provide a measure for the default risk alone. There might be a problem with these

regressions if the assumed causality is called in question.
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Wewill refer only to Du�ee (1996b) and we will describe only the very outlines of this work.

On the basis of monthly data he estimates the coe�cient b1 of the following equation:

�Yt = b0 + b1�rt + : : :+ �: (28)

with �Y the change in the spread of treasury yields and corporate bonds and �r the

monthly change in the three month bill yield (which we see as a proxy for the short rate).

There is one other term in eq.(28) which takes account of the slope of the term structure,

but we am only interested in the absolute level12. These regressions are run for di�erent

industry sectors. Du�ee tries to eliminate other determinants of the yield spread than the

market price of default risk. He admits that if there was any other source than the default

risk which in
uences the corporate spreads systematically his results will be biased.

The main �nding of these regression is a strong negative correlation. This �nding is in

agreement with the theoretical and empirical result of Longsta� and Schwartz (1995) and

D�ullmann et al. (1998). In table 1 we list only the estimated b1 for \long maturity" bonds

(15-30 years).

Rating Aaa Aa A Baa

b1 -0.112 -0.155 -0.194 -0.338

Table 1: Results of Du�ee (1996b) for the regression coe�cient b1, estimated for long maturity

bonds.

These results may be interpreted as follows: A yield increase of the corporate bonds due

to a rise of the short rate by 100 basispoints is b1 times 100 basispoints less than the

increase of the treasury yield. In other words, the spread �Y is diminished by b1 times

100 bp. This is interpreted as that rising interest rates are related to a growth in economic

activity and therefore a default of the individual �rms become more remote. This result

is contrary to the example at the beginning of this chapter. Another observation is that

the correlation tends to rise as the rating falls.

These results refer to an average value in di�erent industry sectors (we have reported

only the average statistic over these sectors) and not to single �rm values. Do we have

to take individual �rm data for an application of the model described in this paper? By

orientating our model at these averaged values we can be sure not to incorporate special

12 This is given with the three month bill rate. The results do not change by taking another variable for

the absolute height, for example the 30 year treasury yield, as Du�ee (1996a) reports.
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e�ects of one �rm. Further it is more realistic to have reliable information about the

behavior of one sector than about single �rms. This is applied in Barth (1999).

We cannot apply these results directly to our work because we take account of the relative

changes, while Du�ee considers (see eq.(28)) absolute changes of the yield spread. This

can be seen by regarding the exponential correlation function eq.(23) which could be

expanded like

Sa(r(t+�t); t+�t) = Sa(r(t); t) (1 + ka�r + : : :) (29)

, �Sa(r(t); t) = 1 + kaSa(r(t); t)�r + : : : :

Assuming that the di�erence in the yield spread �Y only accounts for changes in the

market price of default risk (as discussed in Du�ee (1996b)), choosing the counterparty

a to represent an \average" �rm and identifying �Y and �Sa leads to kaSa(r(t); t) = b1.

By choosing a typical value for Sa it is possible to give a very rough estimate of ka. We

use as typical values the default intensities listed in Fons (1994) for each rating class of

Moody's. Table 2 gives the results.

Rating Aaa Aa A Baa

ka -153 -170 -99 -68

Table 2: Rough estimates of the response coe�cient ka, based on the investigation of Du�ee

(1996b).

Even if the absolute responsiveness grows with a lower rating (which is not the case in

all regressions of Du�ee (1996b) and D�ullmann et al. (1998)), this is no longer true with

these relative changes. In the numerical investigations in Barth (1999), we use values

of ka for the individual �rms in the range of [-32, +32]. The absolute value of these

parameters is in all cases much smaller than the values resulting in the study of Du�ee.

But we consider not only linear but also nonlinear functions like the exponential function,

where larger changes of �r could imply larger contributions. These larger changes will

not be important on the monthly scale, but by iterating eq.(30) for many months a larger

di�erence will result. In this sense a careful use of the estimated averaged values is

necessary.
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3 Conclusion

In this paper a model was presented which is suited for calculating the e�ects of changes in

market variables on the credit risk of a portfolio of market-driven contract subject to credit

risk. This model was compared with the frameworks of CreditMetrics and CreditRisk+.

In contrast to these frameworks the model proposed here concentrates on the treatment

of the market variables while regarding the credit risk. In CreditMetrics and CreditRisk+

the market variables are eliminated and the emphasis is on the treatment of the credit

risks. So the model of this paper takes a complementary approach. In the second part

of the paper the calibration of the correlation between the market and the default risk is

discussed on the basis of recent empirical estimations.

4 Extensions

In Barth (1999) simulation studies based on the model described here are presented. The

main subject of these simulation studies is the determination of the risk-based capital.

The focus lies on taking properly into account the worst cases of the market variables.

Therefore we will discuss several measures for this risk-based capital. The simulation

study will refer to these measures.

The points listed below are ideas for extending the work:

� The application of the Law of Large Numbers is unfortunately not valid. In a later

version of this paper we want to apply arguments of Nielsen (1985) and Hellwig

(1995) to eliminate the individual risks in the case of a large portfolio.

� Instead of considering only one underlying factor for market risk (the interest rate

r), the consideration of many underlying factors (for example currency exchange

rates) might broaden the view of the model.
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