Shortfall Risk, Excess Chance, Portfolio Choice Strategies, and Returns.

Stochastic de Bollinge, PAR option.

Adjutant evidence from the German stock market.

Alternative Target Returns: Option-Based Robust Hedge Strategies with Respect to Shortfall Risks and Excess Chances of

Michael Amin, Peter Athanas, and Ramin Khavari

Introduction

The introduction of options provides a significant increase in the range of possible market outcomes. Option holders can use their options to hedge against adverse market movements, speculate on the direction of underlying assets, and engage in arbitrage opportunities. The availability of options has expanded the traditional portfolio management strategies, allowing investors to diversify their investment strategies and manage financial risk more effectively. In this context, the performance of option strategies is crucial for understanding the potential rewards and risks associated with options.

In a recent study conducted by the Options Clearing Corporation (OCC) in 1994, the performance of option strategies was examined. The study focused on the performance of options in the context of the S&P 500 index over the same period. The results revealed that options performed well, with a positive correlation to the underlying index.

The study also highlighted the importance of understanding the relationship between the underlying asset and the option price. This relationship is influenced by various factors, including the volatility of the underlying asset, the time to expiration, and the strike price. Understanding these factors is crucial for making informed decisions when trading options.

The introduction of options has also led to the development of new financial instruments, such as option-based derivatives. These instruments provide investors with a range of hedging and speculative opportunities, allowing them to tailor their investment strategies to their specific needs.

In conclusion, the introduction of options has expanded the range of possible market outcomes, providing investors with new opportunities to manage financial risk and diversify their portfolios. The performance of option strategies is crucial for understanding the potential rewards and risks associated with options. Understanding the relationship between the underlying asset and option price is essential for making informed decisions when trading options.

References

III. Hollovery (Risk Persistance) Covered Short Call Strategies: Following this

Strategies are often used as a hedge against market downturns, providing
insured gains against significant declines in the underlying asset's value.

Optimally, the investor should sell calls that are either out-of-the-money
or in-the-money at a lower strike price than the current market price of the
underlying asset. This strategy offers protection during periods of market
volatility, allowing the investor to lock in gains or minimize losses.

In the event of a decline in the price of the underlying asset, the calls
sold will be exercised, and the investor will receive the strike price plus
the premium paid. However, if the price remains stable or increases,
the investor will retain the premium received from the option sale.

It is important to carefully select the calls and the timing of their
sale to maximize the benefits of this strategy. Monitoring the market
conditions and adjusting the strategy accordingly is crucial for successful
implementation.

Additional analysis of the underlying asset's volatility and correlation
with other financial instruments can also enhance the effectiveness of
this approach. Regularly reviewing the strategy and adjusting the
investment decisions based on market conditions is essential for
optimizing returns.

In summary, the Hollovery (Risk Persistence) Covered Short Call
Strategy is a valuable tool for managing market risk and
maximizing returns in volatile market environments. Properly
implemented, this strategy can provide significant benefits to
investors seeking to secure gains in uncertain market conditions.

The authors appreciate your interest in this topic and encourage further
exploration and application of these strategies in your investment
portfolios. Please feel free to reach out with any questions or
comments.

Thank you for your time and consideration.
The Pearson product-moment correlation coefficient, also referred to as the Pearson correlation coefficient or simply the correlation coefficient, is a measure of the linear dependence between two variables X and Y. It is defined as:

\[r_{xy} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y} \]

where \(\text{cov}(X,Y) \) is the covariance of X and Y, and \(\sigma_X \) and \(\sigma_Y \) are the standard deviations of X and Y, respectively.

To be able to cope with a random variable \(Y \) where the random variable \(Y \) is

\[\text{max}(0, Y - \mu) = \text{max}(0, \frac{Y - \mu}{\sigma}) \]

In our study we consider as the measure of the short-term predictability, which

\[E[\text{max}(0, Y - \mu)] = \text{max}(0, \frac{E[Y] - \mu}{\sigma}) \]

Of course \(n \) is the number of observations.

The deterministic factor is the variable measure in the case of continuous data is

\[\text{max}(0, Y - \mu) = \text{max}(0, \frac{Y - \mu}{\sigma}) \]

However, a measure of variance obtained from a reference dataset (referee data) is the

\[E[\text{max}(0, Y - \mu)] = \text{max}(0, \frac{E[Y] - \mu}{\sigma}) \]

In our study we consider as the measure of the short-term predictability, which

\[E[\text{max}(0, Y - \mu)] = \text{max}(0, \frac{E[Y] - \mu}{\sigma}) \]

Of course \(n \) is the number of observations.

The deterministic factor is the variable measure in the case of continuous data is

\[\text{max}(0, Y - \mu) = \text{max}(0, \frac{Y - \mu}{\sigma}) \]

However, a measure of variance obtained from a reference dataset (referee data) is the

\[E[\text{max}(0, Y - \mu)] = \text{max}(0, \frac{E[Y] - \mu}{\sigma}) \]

In our study we consider as the measure of the short-term predictability, which

\[E[\text{max}(0, Y - \mu)] = \text{max}(0, \frac{E[Y] - \mu}{\sigma}) \]

Of course \(n \) is the number of observations.

The deterministic factor is the variable measure in the case of continuous data is

\[\text{max}(0, Y - \mu) = \text{max}(0, \frac{Y - \mu}{\sigma}) \]

However, a measure of variance obtained from a reference dataset (referee data) is the

\[E[\text{max}(0, Y - \mu)] = \text{max}(0, \frac{E[Y] - \mu}{\sigma}) \]

In our study we consider as the measure of the short-term predictability, which

\[E[\text{max}(0, Y - \mu)] = \text{max}(0, \frac{E[Y] - \mu}{\sigma}) \]

Of course \(n \) is the number of observations.

The deterministic factor is the variable measure in the case of continuous data is

\[\text{max}(0, Y - \mu) = \text{max}(0, \frac{Y - \mu}{\sigma}) \]

However, a measure of variance obtained from a reference dataset (referee data) is the

\[E[\text{max}(0, Y - \mu)] = \text{max}(0, \frac{E[Y] - \mu}{\sigma}) \]

In our study we consider as the measure of the short-term predictability, which

\[E[\text{max}(0, Y - \mu)] = \text{max}(0, \frac{E[Y] - \mu}{\sigma}) \]

Of course \(n \) is the number of observations.

The deterministic factor is the variable measure in the case of continuous data is

\[\text{max}(0, Y - \mu) = \text{max}(0, \frac{Y - \mu}{\sigma}) \]

However, a measure of variance obtained from a reference dataset (referee data) is the

\[E[\text{max}(0, Y - \mu)] = \text{max}(0, \frac{E[Y] - \mu}{\sigma}) \]

In our study we consider as the measure of the short-term predictability, which

\[E[\text{max}(0, Y - \mu)] = \text{max}(0, \frac{E[Y] - \mu}{\sigma}) \]

Of course \(n \) is the number of observations.

The deterministic factor is the variable measure in the case of continuous data is

\[\text{max}(0, Y - \mu) = \text{max}(0, \frac{Y - \mu}{\sigma}) \]

However, a measure of variance obtained from a reference dataset (referee data) is the

\[E[\text{max}(0, Y - \mu)] = \text{max}(0, \frac{E[Y] - \mu}{\sigma}) \]

In our study we consider as the measure of the short-term predictability, which

\[E[\text{max}(0, Y - \mu)] = \text{max}(0, \frac{E[Y] - \mu}{\sigma}) \]

Of course \(n \) is the number of observations.

The deterministic factor is the variable measure in the case of continuous data is

\[\text{max}(0, Y - \mu) = \text{max}(0, \frac{Y - \mu}{\sigma}) \]

However, a measure of variance obtained from a reference dataset (referee data) is the

\[E[\text{max}(0, Y - \mu)] = \text{max}(0, \frac{E[Y] - \mu}{\sigma}) \]

In our study we consider as the measure of the short-term predictability, which

\[E[\text{max}(0, Y - \mu)] = \text{max}(0, \frac{E[Y] - \mu}{\sigma}) \]

Of course \(n \) is the number of observations.

The deterministic factor is the variable measure in the case of continuous data is

\[\text{max}(0, Y - \mu) = \text{max}(0, \frac{Y - \mu}{\sigma}) \]

However, a measure of variance obtained from a reference dataset (referee data) is the

\[E[\text{max}(0, Y - \mu)] = \text{max}(0, \frac{E[Y] - \mu}{\sigma}) \]

In our study we consider as the measure of the short-term predictability, which

\[E[\text{max}(0, Y - \mu)] = \text{max}(0, \frac{E[Y] - \mu}{\sigma}) \]

Of course \(n \) is the number of observations.
6

The average and excess returns of follower hedge strategies

The average returns of the underlying DVFOX, as well as the alternative

support of hedge strategies are estimated on the basis of the
developed model. The excess returns are calculated as the difference between the average returns of the DVFOX and the returns of the follower hedge strategies.

In general, the estimated excess returns are used to evaluate the effectiveness of the follower hedge strategies. The excess returns are typically measured as the difference between the average returns of the DVFOX and the follower hedge strategies.

We estimate the in-sample distribution and out-of-sample estimator of

\(\hat{\theta} \)

The excess returns are calculated as the difference between the average returns of the DVFOX and the follower hedge strategies.

In general, the estimated excess returns are used to evaluate the effectiveness of the follower hedge strategies. The excess returns are typically measured as the difference between the average returns of the DVFOX and the follower hedge strategies.

We estimate the in-sample distribution and out-of-sample estimator of

\(\hat{\theta} \)

The excess returns are calculated as the difference between the average returns of the DVFOX and the follower hedge strategies.

In general, the estimated excess returns are used to evaluate the effectiveness of the follower hedge strategies. The excess returns are typically measured as the difference between the average returns of the DVFOX and the follower hedge strategies.

We estimate the in-sample distribution and out-of-sample estimator of

\(\hat{\theta} \)

The excess returns are calculated as the difference between the average returns of the DVFOX and the follower hedge strategies.

In general, the estimated excess returns are used to evaluate the effectiveness of the follower hedge strategies. The excess returns are typically measured as the difference between the average returns of the DVFOX and the follower hedge strategies.

We estimate the in-sample distribution and out-of-sample estimator of

\(\hat{\theta} \)

The excess returns are calculated as the difference between the average returns of the DVFOX and the follower hedge strategies.

In general, the estimated excess returns are used to evaluate the effectiveness of the follower hedge strategies. The excess returns are typically measured as the difference between the average returns of the DVFOX and the follower hedge strategies.

We estimate the in-sample distribution and out-of-sample estimator of

\(\hat{\theta} \)

The excess returns are calculated as the difference between the average returns of the DVFOX and the follower hedge strategies.

In general, the estimated excess returns are used to evaluate the effectiveness of the follower hedge strategies. The excess returns are typically measured as the difference between the average returns of the DVFOX and the follower hedge strategies.

We estimate the in-sample distribution and out-of-sample estimator of

\(\hat{\theta} \)

The excess returns are calculated as the difference between the average returns of the DVFOX and the follower hedge strategies.

In general, the estimated excess returns are used to evaluate the effectiveness of the follower hedge strategies. The excess returns are typically measured as the difference between the average returns of the DVFOX and the follower hedge strategies.
The corresponding cell for the covered short call is:

<table>
<thead>
<tr>
<th>Exercise Price</th>
<th>0</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75%</td>
<td>2</td>
</tr>
<tr>
<td>1.6%</td>
<td>2</td>
</tr>
<tr>
<td>2.0%</td>
<td>2</td>
</tr>
<tr>
<td>3.0%</td>
<td>2</td>
</tr>
<tr>
<td>4.0%</td>
<td>2</td>
</tr>
<tr>
<td>5.0%</td>
<td>2</td>
</tr>
</tbody>
</table>

The corresponding cell for the covered long call is:

<table>
<thead>
<tr>
<th>Exercise Price</th>
<th>0</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75%</td>
<td>2</td>
</tr>
<tr>
<td>1.6%</td>
<td>2</td>
</tr>
<tr>
<td>2.0%</td>
<td>2</td>
</tr>
<tr>
<td>3.0%</td>
<td>2</td>
</tr>
<tr>
<td>4.0%</td>
<td>2</td>
</tr>
<tr>
<td>5.0%</td>
<td>2</td>
</tr>
</tbody>
</table>

The following table I contains the values of the exercise rates. The access to the other exercise rates is achieved by applying the unprotected DAXO-portfolio as the input, i.e., we recognize the

\[\text{Estimated on the basis of (6).} \]
Finally, we have the following table for the other strategy:

<table>
<thead>
<tr>
<th>7/35</th>
<th>2/35</th>
<th>1/35</th>
<th>4/21</th>
<th>9/29</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/80</td>
<td>2/19</td>
<td>0/0</td>
<td>2/9</td>
<td>0/4</td>
</tr>
<tr>
<td>0/0</td>
<td>0/0</td>
<td>2/19</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0/0</td>
<td>0/0</td>
<td>1/29</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

The image seems to be a page from a document with text and a table. The text discusses a standard deviation and relates it to the concept of excess frequency. The table contains numerical data, possibly related to statistics or probability. The text and table together suggest a discussion on how standard deviation can be applied to understand excess frequency.
The right side of the distribution (higher values) is of the distribution (lower values)

The central limit theorem states that if certain conditions are met, the distribution of a sample statistic approaches a normal distribution. This theorem is important because it allows us to make inferences about a population based on sample data. The conditions include a large sample size and the independence of the observations. The theorem is particularly useful in hypothesis testing and confidence interval estimation.

The standard deviation of the sample statistic is often used as an estimate of the population standard deviation. In hypothesis testing, the test statistic is compared to a critical value, and decisions are made based on whether the test statistic falls within the critical region. This process helps us determine whether the observed effect is statistically significant or due to chance.

Furthermore, the central limit theorem has practical applications in various fields, such as finance, economics, and engineering. It provides a foundation for many statistical methods and helps us understand the behavior of data in complex systems.
A random variable is a function that takes a value from one set and assigns it to another set. In the following example, we see how random variables are used to model different processes.

A random variable X is called efficient in a set if it will be dominated in the above sense by any other random variable.

The mean H is the expectation of any other random variable.

In the context of finance, the mean H is used to calculate the expected return of a portfolio given the returns of its components. The mean H is used to determine the risk-return trade-off of an investment.

The performance function $f(x)$ is defined as:

$$ f(x) = H(x, f') $$

where x is the input variable and f' is the output variable.

The performance function $f(x)$ is a measure of the risk associated with an investment. The higher the value of $f(x)$, the higher the risk associated with the investment.

Option Strategies

- Call
- Put
- Collar
- Straddle
- Strangle
- Iron Condor

<table>
<thead>
<tr>
<th>Strike Price</th>
<th>Call Premium</th>
<th>Put Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>110</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>120</td>
<td>50</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strike Price</th>
<th>Call Premium</th>
<th>Put Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>$100'$</td>
<td>$30'$</td>
<td>$20'$</td>
</tr>
<tr>
<td>$110'$</td>
<td>$40'$</td>
<td>$30'$</td>
</tr>
<tr>
<td>$120'$</td>
<td>$50'$</td>
<td>$40'$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strike Price</th>
<th>Call Premium</th>
<th>Put Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>110</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>120</td>
<td>50</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strike Price</th>
<th>Call Premium</th>
<th>Put Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>110</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>120</td>
<td>50</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strike Price</th>
<th>Call Premium</th>
<th>Put Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>110</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>120</td>
<td>50</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strike Price</th>
<th>Call Premium</th>
<th>Put Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>110</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>120</td>
<td>50</td>
<td>40</td>
</tr>
</tbody>
</table>
In an intermediate position for the caller, neither highly positive nor highly negative returns are possible. This results in a greater probability of highly negative returns. Returns are still possible in the lower regions, but they are lower. Higher negative returns are still possible in the upper regions, but they are higher.

![Graph](image)

Figure 2: A graph showing the return for different market scenarios. The x-axis represents the target return, and the y-axis represents the probability of achieving that return. The graph shows that there is a higher probability of achieving a lower return, with the probability decreasing as the target return increases.

Figure 1: A graph showing the return for different market scenarios. The x-axis represents the target return, and the y-axis represents the probability of achieving that return. The graph shows that there is a higher probability of achieving a lower return, with the probability decreasing as the target return increases.
\[(\alpha) \quad \text{exercise price of } X \text{ and a riskless rate of return,}\]

\[V = \ln(1 + t) \text{ for } t \geq 0, \text{ where } t \text{ is the time to maturity.}\]

\[\ln(1 + t) = \ln(1 + \frac{d}{100}) = \frac{d}{100} \text{ for } t \geq 0.\]

The put always corresponds to a riskless rate of return. The exercise price of \(d\) and the underlying one period of the underlying is double the exercise price of the call, and the call always corresponds to a riskless rate of return. The exercise price of \(d\) is \(d\) times the exercise price of the call.

Appendix: Statisical problems of follower option strategies
\[\left[\begin{array}{l} \frac{v}{s} - \frac{v}{v} \max \left\{ \frac{v}{v} - 1 \right\} \\ \frac{v}{s} \right] \right] u_i = \\
\frac{1}{s} \left(\frac{v}{v} - 1 \right) + \frac{1}{s} \left(\frac{v}{v} - 1 \right) \left(\frac{v}{v} - 1 \right) \right] u_i = \\
\left(\frac{v}{v} - 1 \right) \left(\frac{v}{v} - 1 \right) \right] u_i = \frac{v}{s} \]

Thus, the continuous return of the option strategy is given by

\[\frac{v}{s} \left(\frac{v}{v} - 1 \right) \max \left(\frac{v}{v} - 1 \right) + \frac{v}{s} \left(\frac{v}{v} - 1 \right) = \frac{v}{s} \]

and due to this we can conclude:

\[\frac{v}{s} \left(\frac{v}{v} - 1 \right) \max \left(\frac{v}{v} - 1 \right) + \frac{v}{s} \left(\frac{v}{v} - 1 \right) = \frac{v}{s} \]

According to the development of the values \(A \) of the fixed percentage periodic for the development of the values \(A \) of the fixed percentage periodic 100 of the constant price of the basis factor at the beginning of the transaction, we can conclude:

\[\frac{v}{s} \left(\frac{v}{v} - 1 \right) \max \left(\frac{v}{v} - 1 \right) + \frac{v}{s} \left(\frac{v}{v} - 1 \right) = \frac{v}{s} \]

We obtain:

\[\frac{v}{s} \left(\frac{v}{v} - 1 \right) \max \left(\frac{v}{v} - 1 \right) + \frac{v}{s} \left(\frac{v}{v} - 1 \right) = \frac{v}{s} \]

where