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ABSTRACT

We experimentally test a theory of risky choice in which the perception of a lottery payoff is noisy
due to information processing constraints in the brain. We model perception using the principle of
efficient coding, which implies that perception is most accurate for those payoffs that occur most
frequently. Across two pre-registered laboratory experiments, we manipulate the distribution from
which payoffs in the choice set are drawn. In our first experiment, we find that risk taking is more
sensitive to payoffs that are presented more frequently. In a follow-up task, we incentivize subjects
to classify which of two symbolic numbers is larger. Subjects exhibit higher accuracy and faster
response times for numbers they have observed more frequently. In our second experiment, we
manipulate the payoff distribution so that efficient coding induces the decision maker’s perceived
value function to switch from concave to convex. We find that demand for risk is significantly
higher when efficient coding induces a convex value function. Together, our experimental results
suggest that risk taking depends systematically on the payoff distribution to which the decision
maker’s perceptual system has recently adapted. More broadly, we provide novel evidence of the
importance of imprecise and efficient coding in economic decision-making.
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I. Introduction

In nearly all economic models of risky choice, the decision maker (henceforth DM) is assumed

to make a choice based on a precise representation of available lotteries. Yet a large literature

in numerical cognition finds that humans perceive numerical quantities with noise, even when

the quantities are clearly presented to the DM through Arabic numerals (see Dehaene, 2011,

for a review). This basic premise leads to the hypothesis, recently proposed by Khaw, Li, and

Woodford (2020) (henceforth KLW), that risky choice will also be based on a noisy representation

of available lotteries. As KLW show theoretically, noisy perception of lottery payoffs can provide a

microfoundation for small-stakes risk aversion and stochastic choice.

The idea that perceptual noise drives risk aversion has a variety of important but untested

implications. For instance, if perceptual noise systematically varies across environments, so should

the DM ’s appetite for risk (Woodford, 2012a,b). This implication is particularly relevant because

there is evidence that noise in perception of sensory stimuli—such as light or sound—changes

optimally with the environment. Specifically, a core principle from neuroscience called efficient

coding, states that the brain should allocate resources so that perception is relatively more precise

for those stimuli that are expected to occur relatively more frequently (Barlow, 1961; Laughlin,

1981).1 This principle explains the temporary “blindness” that we experience when moving from a

dark room to a brightly lit one, because resources have not yet been adjusted for precisely perceiving

objects in the new bright environment. If the principle of efficient coding also governs choice under

risk, then the DM ’s perception of a lottery payoff—and hence her appetite for risk—will vary with

the environment.

In this paper, we design and conduct two pre-registered experiments to test the hypothesis that

efficient coding operates during risky choice. In each experiment, we measure how the demand for

a risky lottery varies as we change the payoff distribution to which a subject has recently adapted.

To guide our experimental design, we build a theoretical framework that combines principles from

two existing models. First, the foundation of our framework is the KLW model, which assumes

that the DM observes noisy signals of lottery payoffs and subsequently forms optimal estimates

1For experimental evidence consistent with efficient coding in sensory perception, see Girshick, Landy, and Si-
moncelli (2011), Wei and Stocker (2015, 2017), Payzan-LeNestour and Woodford (2020), and Heng, Woodford, and
Polańıa (2020). See also the evidence from Polańıa, Woodford, and Ruff (2019) on efficient coding in choice between
food items.
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of these payoffs through Bayesian inference. Second, we rely on the efficient coding model from

Heng, Woodford, and Polańıa (2020) (henceforth HWP) to endogenize the conditional distribution

of noisy signals—which is called the “efficient code.” As in KLW, our framework generates the

probability of choosing a risky lottery over a certain option; but, crucially, by adding the efficient

coding mechanism from HWP, we can assess how the probability of choosing the risky lottery varies

with the environment.

To build intuition, consider a DM who is choosing between a binary risky lottery and a certain

option. Furthermore, suppose the DM is in a low volatility environment where the upside of the

risky lottery is drawn from a narrow range between $15 and $25. Efficient coding implies that

the brain will allocate its limited resources across this narrow range, allowing the DM to easily

distinguish between payoffs in the range [$15, $25]. Suppose now the volatility increases, so that

the upside of the risky lottery is drawn from a wider range between $5 and $35. Efficient coding

then predicts that resources will be partially reallocated away from the narrow range and towards

the extremes of the new range. As a consequence, it becomes harder for the DM to distinguish

between payoffs in the range [$15, $25] because the perceptual system must “cover more ground”

with the same budget of resources.

The shift in perceptual resources immediately leads to a testable prediction about choice. In

the low volatility environment, if we increase the upside of the risky lottery from, say, $20 to $21,

the DM will easily be able to distinguish between the two payoffs, and therefore she can easily

perceive the increase in the attractiveness of the risky lottery. As a result, the increase in the risky

lottery’s upside payoff will have a large impact on the likelihood that the DM accepts the risky

lottery. Conversely, in the high volatility environment, perceptual resources are spread across a

wider range, and therefore the DM will have greater difficulty distinguishing between $20 to $21.

Thus, the same $1 increase in the risky lottery payoff will have a smaller impact on the DM ’s

likelihood of accepting the risky lottery, compared to that in the low volatility environment.

More generally, the efficient coding model of HWP predicts that perception—and hence behavior—

is more sensitive to changes in payoff values when the dispersion of potential payoffs is smaller.

This prediction is inconsistent with most standard economic models of risky choice in which valu-

ation is non-stochastic and independent of context. At the same time, the prediction is shared by

a broad class of theories including the prominent decision-by-sampling model from cognitive sci-
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ence (Stewart, Chater, and Brown, 2006), theories of normalization from neuroscience (Rangel and

Clithero, 2012; Carandini and Heeger, 2012; Louie, Glimcher, and Webb, 2015),2 and alternative

specifications of efficient coding (Wei and Stocker, 2015; Khaw et al., 2020).3

In our first experiment, we test the above prediction by incentivizing subjects to make a series of

decisions between a risky lottery and a certain option. A novel aspect of our design, which enables

a causal test of efficient coding, is that we manipulate the range of payoffs across a high volatility

condition and a low volatility condition. In order to cleanly compare behavior, we carefully select

a set of thirty “common trials” that are presented in both conditions. Furthermore, a crucial

component of our experimental design is that our tests do not depend on whether the DM ’s

objective is to maximize the precision of her payoff estimate (as in models of sensory perception)

or to maximize her expected financial gain (as in models of economic decision-making) (Rustichini

et al., 2017; Ma and Woodford, 2020).4 Thus, the data we produce can be used to simultaneously

test different specifications of efficient coding in choice under risk.

The results from our first experiment provide strong evidence that efficient coding influences

the demand for risky lotteries. We find that in the low volatility condition, a $1 increase in the

certain option payoff is associated with an 18.6% increase in the probability of choosing the certain

option, compared to a smaller increase of 13.7% in the high volatility condition. These estimates

are based on the same exact choice sets in each condition, and the effect is significant both between

and within subjects. We also find novel evidence that the certain option payoff and the risky lottery

payoff are efficiently coded separately, suggesting that in our experiment, the mechanism operates

at the level of individual payoffs. Furthermore, subjects execute decisions significantly faster in the

low volatility condition, indicating that the effect of efficient coding on choice is even stronger if it

were adjusted for information processing time.

2Several experiments have found evidence consistent with normalization of value signals in the brain (e.g., Tobler,
Fiorillo, and Schultz, 2005; Padoa-Schoppa, 2009). For behavioral evidence consistent with normalization, see Soltani,
De Martino, and Camerer (2012), Khaw, Glimcher, and Louie (2017), and Zimmermann, Glimcher, and Louie (2018).
Recent behavioral economic theories also invoke normalization to explain several prominent patterns of context
dependent choice (Glimcher and Tymula, 2019; Landry and Webb, 2019).

3See also related theoretical work on how efficient coding can serve as a normative foundation for decision-by-
sampling (Bhui and Gershman, 2018; Heng et al., 2020) and a specific model of normalization (Rustichini, Conen,
Cai, and Padoa-Schioppa, 2017).

4As emphasized in Ma and Woodford (2020), there are differences in the way that resource constraints are imposed
across different models of efficient coding. While we use a specific constraint levied by the Heng et al. (2020) model,
the main prediction we test is qualitatively similar to other models of efficient coding in sensory perception that
assume different constraints, such as Wei and Stocker (2015).
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As an additional test of the mechanism, we present each subject with a “perceptual choice”

task following the risky choice task. In this second task, subjects still need to perceive numerical

quantities, but they do not need to perceive any probabilities or integrate them with payoffs. We

incentivize subjects to simply classify whether a two-digit number displayed on each trial is above

or below a reference number. We find that even in this simpler environment, classification accuracy

depends strongly on the distribution of numbers to which the subject has adapted. Subjects are

significantly more accurate and they respond faster if the number they are classifying was presented

more frequently in the recent past.

We then structurally estimate our efficient coding model for each subject, separately for the

risky choice and perceptual choice tasks. The estimation indicates that the parameter governing

noisy perception is positively correlated across the two tasks, with a rank correlation of 0.30. This

finding suggests that risk taking in the first task is partly governed by a perceptual mechanism that

can be inferred from riskless choice. Our cross-task evidence complements recent work by Garcia,

Grüschow, Polańıa, Woodford, and Ruff (2018) who find that a subject’s demand for risk can be

predicted from a separate task on numerosity comparison (in which subjects are asked to compare

two arrays of dots, rather than two Arabic numerals as in our design).5

When viewed through the lens of efficient coding, the results from our first experiment are driven

by an increase in noise when shifting from a low to high volatility condition. But efficient coding

also predicts strong biases in valuation. As emphasized by Woodford (2012a,b), efficient coding can

theoretically generate a value function that exhibits several features from prospect theory, including

reference dependence and diminishing sensitivity (Kahneman and Tversky, 1979). Moreover, these

features can fluctuate over time as an optimal response to changes in the environment. One

particularly stark prediction is that a payoff distribution with a decreasing density will generate

a concave value function, while a distribution with an increasing density will generate a convex

value function. Both shapes of the value function are a consequence of the perceptual system

exhibiting diminishing sensitivity as payoffs become less frequent (Robson, 2001; Rayo and Becker,

2007; Netzer, 2009; Payzan-LeNestour and Woodford, 2020).6

5Schley and Peters (2014) also provide evidence of a link between risk taking and imprecise number representa-
tions. However, they emphasize that the link between the two domains emanates from a deterministic perceptual bias,
whereas our parameter identification relies heavily on the stochasticity of perception, which endogenously generates
the biases in perception.

6For work on how neural computations can generate such an effect, see Louie et al. (2015) and Webb, Glimcher,
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In our second experiment, we test whether risk taking is greater when the DM has adapted to

an increasing distribution compared to a decreasing distribution. Across two experimental condi-

tions, we manipulate the shape of the payoff distribution while holding constant its range. When

analyzing identical choice sets across the two conditions, we find evidence consistent with a system-

atic bias in valuation. As predicted by efficient coding, the probability of choosing the risky lottery

is significantly higher when subjects are adapted to the increasing distribution, compared to the

decreasing distribution. Intuitively, when the subject is adapted to an increasing distribution, per-

ceptual resources are allocated towards higher payoffs; this resource allocation generates increasing

sensitivity to larger payoffs, and thus a convex value function. The convexity gives rise to risk-

seeking behavior, and thus a greater demand for risk, compared to the situation in which the DM is

adapted to a decreasing distribution. Our results are consistent with those from a recent perceptual

choice experiment by Payzan-LeNestour and Woodford (2020), who find that “outlier” stimuli are

perceived less accurately than more frequently occurring stimuli. More generally, we provide novel

evidence consistent with a prominent hypothesis that diminishing sensitivity to payoffs arises, in

part, from an optimal allocation of perceptual resources.

We emphasize that the existing evidence of efficient coding, which comes almost exclusively

from data on sensory perception, in no way implies that the same mechanisms are deployed during

decision-making under risk. Rather, what we test in this paper is precisely the hypothesis that

efficient coding and noisy perception are also active in higher-level decision systems that govern

risky choice. Our experimental evidence therefore supports a nascent theoretical agenda on the

implications of imprecise and efficient coding for economic behavior (Woodford, 2012a,b; Steiner

and Stewart, 2016; Gabaix and Laibson, 2017; Natenzon, 2019; Khaw et al., 2020; Woodford, 2020).

At a broader level, our results contribute to a growing literature that builds cognitive and

perceptual foundations for the psychological assumptions in behavioral economics. For instance,

several behavioral models of financial markets demonstrate that prospect theory preferences can

explain puzzling facts such as the high equity premium of the aggregate stock market (see Barberis,

2018, for a review). Our results provide novel empirical evidence consistent with the proposition

that efficient coding provides a normative foundation for the value function assumed in prospect

and Louie (2020).
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theory (Woodford, 2012a,b).7 As we show in Section IV, the particular efficient coding rule we use

can also generate the probability weighting function from prospect theory, which has previously

been microfounded on principles of salience (Bordalo, Gennaioli, and Shleifer, 2012), earlier models

of noisy coding of probabilities (Steiner and Stewart, 2016; Khaw et al., 2020), and cognitive

uncertainty (Enke and Graeber, 2020).

The rest of the paper is organized as follows. In Section II, we present a theory of efficient

coding that guides our experimental design. Section III provides experimental tests of the model

by studying how the payoff distribution affects choice. Section IV provides additional discussions

and Section V concludes.

II. The Model

In this section, we present a theory of efficient coding and risky choice that integrates two

existing theoretical models. The foundation of our theory is the Khaw et al. (2020) model of noisy

perception of lottery payoffs. In their baseline model, KLW assume a particular form of noisy

coding of lottery payoffs and a specific form of the prior, which they use to derive a series of novel

implications for risky choice. We build on KLW by integrating it with the Heng et al. (2020) model

of efficient coding. By combining these two models, we are able to generate predictions about how

the noisy coding rule—and the probability of risky choice—systematically changes for any payoff

distribution to which the DM has adapted.8

1. Choice environment

The DM faces a choice set that contains two options: a certain option and a risky lottery. The

certain option, denoted as (C, 1), pays C > 0 dollars with certainty. The risky lottery, denoted

as (X, p; 0, 1 − p), pays X > 0 dollars with a probability of p and zero dollars with the remaining

probability of 1− p. The DM ’s task is to choose between these two options.

Under expected utility, a DM with utility U(·) chooses the risky lottery over the certain option

7For alternative approaches to endogenizing the value function in prospect theory, see Friedman (1989) and Denrell
(2015).

8KLW also provide an extension to their baseline model in which the precision of the noisy coding rule can
flexibly change with the volatility of a particular (lognormal) prior distribution. Our framework further generalizes
this flexibility by allowing optimal coding rules for any prior distributions.
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if and only if

p · U(X) + (1− p) · U(0) > U(C). (1)

Conditional on X, C, and p, the DM ’s choice is non-stochastic.

We now present the KLW framework of noisy coding, which departs from expected utility by

assuming that perceptions of X and C are noisy. The noisy coding assumption is motivated by

the literature in sensory perception, where a common finding is that, when an identical stimulus

is presented on different occasions (e.g., a fixed number of dots presented across different trials of

an experiment), experimental subjects judge the stimulus differently across the different occasions

(Dehaene, 2011; Girshick et al., 2011; Wei and Stocker, 2015, 2017).9 Before observing the choice

set containing X and C, the DM holds prior beliefs about each payoff, given by f(X) and f(C),

respectively. Upon observing the choice set, the DM ’s perceptual system spontaneously generates

a noisy signal, Rx, of X, and a noisy signal, Rc, of C.10 Each of the two noisy signals is drawn

from a distinct conditional distribution: Rx is randomly drawn from f(Rx|X), and Rc is randomly

drawn from f(Rc|C). In the language of Bayesian inference, these conditional distributions are the

likelihood functions, which we define in the next subsection.

Given the prior beliefs and the noisy signals, the DM follows Bayes’ rule to generate a posterior

distribution for each payoff, which we denote by f(X|Rx) and f(C|Rc). The DM ’s estimate of

each payoff is given by the conditional mean of each posterior distribution: E[X̃|Rx] and E[C̃|Rc].

As in KLW, we assume that the DM has linear utility.11 Therefore, the DM chooses the risky

lottery if and only if the perceived expected value of the risky lottery exceeds that of the certain

option, which is given by the following condition: p · E[X̃|Rx] > E[C̃|Rc].12

9Further evidence for this assumption, particularly in the domain of numerical cognition, comes from recent
experimental work which demonstrates that single neurons in the human brain selectively and stochastically respond
to a given number (Kutter, Bostroem, Elger, Mormann, and Nieder, 2018). Such “number neurons” are likely to
generate the noisy perception of symbolic numbers. For a more comprehensive review of the literature in noisy
numerical cognition, see Section 1 of KLW.

10In the environment of choice between lotteries that we study here, our interpretation is that the noisy signals
are generated unconsciously, and are not the outcome of deliberate and conscious information acquisition in the sense
of Stigler (1961). For a further discussion on this point, see Ma and Woodford (2020).

11Here we focus on how imperfect perception—rather than intrinsic risk preferences—affects risky choice. We
emphasize that the model here does not preclude the more traditional source of risk aversion, through diminishing
marginal utility of wealth. In Section III.1.5, we estimate an extended model by allowing for both imperfect perception
and intrinsic risk aversion.

12We assume for simplicity that (i) the probability p is perceived without noise, and (ii) the probability p is
integrated with E[X̃|Rx] without noise. In Section III.1, we conduct an experiment on number classification that
provides a sharp test of the efficient coding hypothesis without appealing to these two assumptions. In Section IV.3,
we further discuss our model’s implications for the imperfect perception of probability.
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It is worth noting that the encoding process described above—the process that maps X and C

to Rx and Rc—is conditional on the values of X and C, which we assume are perfectly observable

to the econometrician but not to the DM . That is, even after the DM is presented with a choice

set, she still faces uncertainty about the payoff values of X and C. Therefore, Bayesian inference

takes place at the level of a single choice set, and characterizes how the DM ’s prior belief shifts

after observing a noisy signal of the true payoff. The noisy encoding of payoffs drives the main

model predictions.13

2. Likelihood function and coding optimality

Here we depart from KLW by allowing the likelihood functions to vary for any prior distri-

bution. In this case, the DM still encodes each payoff with noise, but the noise distribution can

be optimized to meet a specific performance objective. We rely on the efficient coding model of

HWP to endogenize the likelihood functions f(Rx|X) and f(Rc|C). Although there are alternative

specifications for the efficient likelihood functions, an attractive feature of HWP is that it is general

enough to accommodate multiple different performance objectives—for instance, maximizing ex-

pected financial gain or maximizing the mutual information between a stimulus and its noisy signal.

This feature is important because it allows us to identify an environment in which predictions are

invariant to the DM ’s performance objective. Such an environment is ultimately used as the basis

for our experimental design in Section III.

When maximizing a given performance objective, the DM faces an information processing

constraint. HWP assume that information can only be processed through a finite number of n

“neurons,” where the output state of each neuron takes the value 0 or 1. The output states of

these n neurons are assumed to be mutually independent, with each neuron taking the value 1 with

the probability θ(X) and taking the value 0 with the remaining probability 1− θ(X). Given that

the neurons are mutually independent, a sufficient statistic for the output of the n neurons is the

summed output across all neurons, which we denote by Rx (the same is true for Rc). Thus, the

13While our focus is on choice between lotteries with non-negative payoffs, the KLW theory can easily be extended
to account for negative payoffs. Appendix D of KLW discusses implications of the theory when the magnitude of a
loss is encoded with noise, and the DM chooses the lottery with the smallest perceived expected loss.
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noisy signal, Rx, can take on integer values from 0 to n, and the likelihood function is defined by

f(Rx|X) =

(
n

Rx

)
(θ(X))Rx(1− θ(X))n−Rx . (2)

The one free parameter in the encoding process, n, represents a capacity constraint: as n goes to

infinity, the random variable Rx/n converges almost surely to its mean θ(X), and therefore the

amount of noise in perceiving X is reduced to zero.

The driving force of the likelihood function is the coding rule, θ(X), which maps the input value

X to the probability that a given neuron emits a value of 1. Intuitively, if the DM is particularly

concerned about perceiving values of X within a given range, then a good coding rule, θ(X), should

be very sensitive to X over that range.

2.1. Maximizing mutual information

To formalize this notion, HWP consider three different performance objectives. The first ob-

jective, which is most often associated with the efficient coding literature in sensory perception, is

that the DM maximizes mutual information between X and its noisy signal Rx
14

max
θ(X)

I(X,Rx), (3)

where the mutual information I(X,Rx) is defined as I(X,Rx) = H(Rx) − H(Rx|X), that is, the

difference between the marginal entropy of Rx and the entropy of Rx conditional on X.

HWP show that, when n is large, the optimal coding rule that maximizes the mutual information

in (3) is

θ(X) =
[
sin
(π

2
F (X)

)]2
, (4)

where F (X) is the cumulative density function of the DM ’s prior belief f(X). Substituting (4)

into (2) therefore pins down the “efficient” likelihood function when the DM ’s objective is to

maximize mutual information.15

14For instance, see Wei and Stocker (2015, 2017).
15As emphasized in HWP, the optimal coding rule θ(X) is not constrained to take on values in the open interval

(0, 1). In fact, given the constraint that all information about a payoff must be processed through a set of statistically
independent neurons, a deterministic mapping from X to Rx is also feasible. Nonetheless, HWP show that the
optimal solution implies that the encoding of value is indeed stochastic; that is, for some values of X, 0 < θ(X) < 1.
The intuition for this result can be briefly described as follows: a deterministic coding rule for each neuron implies
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Because we assume that X and C are encoded independently, the optimal coding rule for

maximizing the mutual information between C and its noisy signal Rc takes a similar form:

θ(C) =
[
sin
(π

2
F (C)

)]2
, (5)

where F (C) is the cumulative density function of the DM ’s prior belief f(C).

2.2. Maximizing accuracy and maximizing expected financial gain

HWP consider two alternative performance objectives besides maximizing mutual information.

First, they consider how the coding rule would change if the DM were to maximize the probability

of an accurate choice, given by:

Probaccurate ≡
∫∫

Prob(Rx > Rc|θ(X) > θ(C))1θ(X)>θ(C)f(X,C)dXdC

+

∫∫
Prob(Rx < Rc|θ(X) < θ(C))1θ(X)<θ(C)f(X,C)dXdC,

(6)

where f(X,C) is the DM ’s prior belief about the joint distribution of X and C.16

An alternative performance objective, and one that is often used in economic settings, is to

maximize the DM ’s expected financial gain, defined as:

Expected financial gain ≡
∫∫

pX · Prob(choose the risky lottery|X,C)f(X,C)dXdC

+

∫∫
C · Prob(choose the certain option|X,C)f(X,C)dXdC.

(7)

HWP show that, in general, the optimal coding rule implied by these three different objectives will

that the noisy signal Rx can take on only two values: 0 or n. By allowing for noisy encoding, the set of possible
values of Rx expands dramatically to include all integers between 0 to n, which helps increase the mutual information
I(X,Rx). Thus, the noise in perception can be interpreted as an optimal response to the particular information
processing constraint assumed in HWP. If the information constraint is modified, then it may be optimal to have a
deterministic coding rule (Bhui and Gershman, 2018).

16Formally, an accurate decision, given X and C, is to choose the option with the higher expected payoff observed
by the econometrician. That is, when pX − C > 0, the DM chooses the risky lottery; when pX − C < 0, the DM
chooses the safe option; and when pX − C = 0, the DM randomly chooses one of the two options. As discussed in
Appendix A, the probability of this accurate decision equals the probability that Rx − Rc and θ(X) − θ(C) are of
the same sign.
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be distinct. Importantly, we prove in Appendix A that, when the following conditions

(i) draws of X and C are independent

and (ii) pX and C are identically and uniformly distributed

(8)

are satisfied, all three coding rules—one that maximizes mutual information (equation (3)), one that

maximizes accuracy (equation (6)), and one that maximizes expected payoff (equation (7))—are

equivalent.17

As mentioned above, this equivalence result is useful because it characterizes a class of environ-

ments in which the implications of efficient coding are invariant to the three objectives considered

above. In our main experiment, we build a design that satisfies the conditions in (8) in order to

provide general tests of efficient coding. Thus, the results we present in the following subsections

assume the DM ’s objective is to maximize mutual information.

2.3. Properties of likelihood function

Here we illustrate how the likelihood function depends explicitly on the DM ’s prior beliefs. For

now, we suppose that the DM ’s prior belief about X is a uniform distribution between Xl and

Xu (Xl < Xu), and that her prior belief about C is a uniform distribution between Cl and Cu

(Cl < Cu). In keeping with the conditions in (8), we further set Cl = p · Xl and Cu = p · Xu, so

that pX and C are identically distributed. Given these assumptions, the likelihood functions of X

and C are

f(Rx|X) =

(
n

Rx

)([
sin

(
π

2

X −Xl

Xu −Xl

)]2)Rx (
1−

[
sin

(
π

2

X −Xl

Xu −Xl

)]2)n−Rx
,

f(Rc|C) =

(
n

Rc

)([
sin

(
π

2

C − Cl
Cu − Cl

)]2)Rc (
1−

[
sin

(
π

2

C − Cl
Cu − Cl

)]2)n−Rc
.

(9)

The expressions in (9) show that, with a finite n, the likelihood functions depend directly on the

parameters of the prior distributions, Xl, Xu, Cl, and Cu.18 This dependence of the likelihood

17The coding rules described above are derived when n, the parameter for the capacity constraint, is sufficiently
large. With smaller values of n, say, n = 10, the coding rules are approximately optimal; for more discussion of this
point, see Appendix 7 of HWP. When illustrating the model’s implications, we set n to 10.

18As n goes to infinity, the relation between the “normalized” signal (Rx/n or Rc/n) and the stimulus values (X
or C) becomes a deterministic one-to-one mapping. In this limiting case, the parameter values of Xl, Xu, Cl, and
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function on the prior is a signature characteristic of efficient coding.

[Place Figure 1 about here]

Figure 1 illustrates the malleability of the likelihood function. Panel A presents two different

prior distributions over X, one with high volatility and the other with low volatility. In the high

volatility environment, X is distributed uniformly over a wide range (Xl = 8 and Xu = 32), whereas

in the low volatility environment, X is distributed uniformly over a narrow range (Xl = 16 and

Xu = 24). As described by (4), these two distributions induce different coding rules θ(X). Panel

B of Figure 1 shows that the coding rule is steeper for the low volatility distribution, compared

to the high volatility distribution. Recall that the coding rule gives the “success probability” of

the binomial distribution in (2). Thus, a steeper coding rule implies that the success probability

is more sensitive to changes in X. Panel C plots the implied likelihood function for two values,

X = 18 and X = 22, and for each of the two prior distributions. In the low volatility environment,

a payoff of X = 18 generates a very different distribution of signals f(Rx|X) compared to a payoff

of X = 22. In the high volatility distribution, however, X = 18 and X = 22 generate distributions

of signals that overlap extensively. The more extensive overlap of the likelihood functions in the

high volatility environment leads to less discriminability between the two payoffs, compared to the

low volatility environment. As we show in the next subsection, this difference in discriminability

has a direct impact on risky choice.

3. Value function and implications for choice

Given the prior and likelihood functions defined above, the DM proceeds by using Bayesian

inference to compute a posterior distribution of beliefs about each payoff in the choice set. We

assume that the DM uses the mean of the posterior distribution as her estimate of each payoff.

Specifically, the posterior means of X and C, conditional on Rx and Rc, are given by

E[X̃|Rx] ≡
∫ Xh

Xl

f(X|Rx)XdX =

∫ Xu

Xl

f(Rx|X)f(X)XdX∫ Xu

Xl

f(Rx|X)f(X)dX

(10)

Cu do not affect the perceptions of X and C.
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and

E[C̃|Rc] ≡
∫ Cu

Cl

f(C|Rc)CdC =

∫ Cu

Cl

f(Rc|C)f(C)CdC∫ Cu

Cl

f(Rc|C)f(C)dC

, (11)

where f(X) and f(C) are the DM ’s prior beliefs about X and C, and the likelihood functions

f(Rx|X) and f(Rc|C) are from (9).

Importantly, equation (10) shows that the DM ’s estimate of X is a random variable, where the

randomness comes from Rx. Therefore, the DM faces a distribution of perceived values for each X.

We now characterize the mean and standard deviation of this distribution. Specifically, we define

the value function, v(X), by

v(X) =
∑n

Rx=0
E[X̃|Rx] · f(Rx|X), (12)

where E[X̃|Rx] is from (10) and f(Rx|X) is from (9). That is, v(X) represents the subjective

valuation of X averaged across different values of Rx. Moreover, we define the standard deviation

for the subjective valuation, σ(X), by

σ(X) =
[∑n

Rx=0
(E[X̃|Rx])

2
f(Rx|X)− v(X)

]1/2
. (13)

Equations (12) and (13), together with equations (4) and (9), indicate that the curvature of the

value function and the randomness in subjective valuation are jointly determined by the DM ’s

prior belief and the implied likelihood function.

[Place Figure 2 about here]

In keeping with the running example from the previous subsection, Panel A of Figure 2 plots, for

both the high volatility condition (Xl = 8 and Xu = 32) and the low volatility condition (Xl = 16

and Xu = 24), the average subjective valuation v(X), as well as its one-standard-deviation bounds

v(X)± σ(X).

The figure shows that randomness in utility, σ(X), is substantially higher in the high volatility

condition. This is a result of the fact that the likelihood functions in the high volatility condition

exhibit more overlap with each other, compared to those in the low volatility condition. Because
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subjective valuation is noisier in the high volatility condition, the model predicts that choices will

also be noisier, and hence less sensitive to a given change in payoff amounts.

To see this explicitly, we compute the probability of choosing the risky lottery—which we refer

to from now on as the “probability of risk taking.” To do so, recall that, conditional on X and C,

the noisy signals Rx and Rc are drawn from the likelihood functions f(Rx|X) and f(Rc|C). For a

given realization of (Rx, Rc), the DM then chooses between the risky lottery and the certain option

based on the posterior means of X and C in equations (10) and (11). As a result, when fixing X,

C, and the stimulus distributions, we can compute the probability of risk taking as follows:

Prob(risk taking|X,C) =
n∑

Rx=0

n∑
Rc=0

(
1p·E[X̃|Rx]>E[C̃|Rc] · f(Rx|X) · f(Rc|C)

)
+

n∑
Rx=0

n∑
Rc=0

(
1p·E[X̃|Rx]=E[C̃|Rc] ·

1

2
f(Rx|X) · f(Rc|C)

)
.

(14)

Equation (14) says that when p · E[X̃|Rx] > E[C̃|Rc], the DM chooses the risky lottery over the

certain option; and when p · E[X̃|Rx] = E[C̃|Rc], the DM randomly chooses between these two

options.

[Place Figure 3 about here]

Panel A of Figure 3 plots the probability in (14) against the difference in expected values

between the two options, pX − C. As before, we examine two volatility conditions: in the high

volatility case, we set Xl = 8, Xu = 32, Cl = 4, and Cu = 16; and in the low volatility condition,

we set Xl = 16, Xu = 24, Cl = 8, and Cu = 12. We set p, the probability that the risky lottery

pays X dollars, to 0.5; and we set n, the capacity constraint parameter, to 10. Note that, for each

volatility level, the conditions in (8) are satisfied, so the coding rules θ(X) and θ(C) simultaneously

maximize mutual information, the probability of accuracy, and the DM ’s expected financial gain.

Naturally, a higher value of pX − C increases the attractiveness of the risky lottery and hence

increases the probability of risk taking. Note that, under expected utility and with no background

wealth, the probability of risk taking should be a step function of pX − C with a single step at

pU−1((U(C)−(1−p)U(0))/p)−C. However, Panel A of Figure 3 shows that under noisy coding, the

probability of risk taking has an S-shaped relationship with pX − C. Importantly, under efficient
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coding, the overall slope of this function is negatively related to the volatility of the stimulus

distribution. Thus, for a given increase in the payoff X, the probability of choosing the risky

lottery increases more in the low volatility condition. This difference in sensitivity to a lottery

payoff is inherited directly from the property of the likelihood functions (Panel C of Figure 1),

where a given increase in X leads to a larger difference in the distribution of noisy signals in the

low volatility condition, compared to the high volatility condition.

Panel A of Figure 3 shows how risk taking varies with pX−C. However, an important assump-

tion in the framework we present is that X and C are encoded independently; thus risk taking

should also be more sensitive to X and C separately, when they are drawn from the low volatility

condition, compared to the high volatility condition. Panel B of Figure 3 demonstrates that the

model indeed predicts that X and C should each be efficiently coded separately. In Section III.1.2,

we discuss experimental results that are consistent with this notion of “parallel coding.”

4. Increasing and decreasing payoff distributions

So far, we have focused on how payoff volatility affects the dispersion in perception, σ(X).

However, efficient coding can also induce biases in perception, in the sense that v(X) can differ

significantly from X (Woodford, 2012a,b; Khaw et al., 2020). Panel A of Figure 2 indicates that

with a uniform distribution, v(X) largely coincides with X, although there is evidence of minimal

perceptual biases at the extreme ends of each payoff distribution.

Under other payoff distributions, however, efficient coding can induce sizeable perceptual bi-

ases. To illustrate how these stronger perceptual biases arise, we consider a different environment

in which the payoff distribution of C remains uniform, while the payoff distribution of X is ei-

ther monotonically increasing or monotonically decreasing. The implications of a monotonically

decreasing distribution are particularly interesting, because there is evidence that the naturally

occurring distribution of numerical quantities—i.e., the frequency with which number words are

printed in written text—follows a monotonically decreasing distribution (Dehaene and Mehler,

1992). Specifically, we set

f(X;Xl, Xu,∆) =
1

Xu −Xl
−∆ + 2∆ · X −Xl

Xu −Xl
, (15)
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where ∆ is a slope parameter: a positive ∆ implies an increasing distribution, and a negative ∆

implies a decreasing distribution.

Panel B of Figure 2 plots, for both an increasing prior distribution (Xl = 8, Xu = 32, and

∆ = 1/30) and a decreasing prior distribution (Xl = 8, Xu = 32, and ∆ = −1/30), the average

subjective valuation v(X), as well as its one-standard-deviation bounds v(X) ± σ(X). For an

increasing payoff distribution, the value function is convex overall. In this case, small values of X

occur with low frequency, causing the DM to allocate less coding resources towards these small

values. Thus, the lack of discriminability among small values of X gives rise to a positive perceptual

bias: v(X) is greater than X when X is small. Conversely, for a decreasing payoff distribution,

the DM allocates less coding resources towards large values of X. As a result, the DM exhibits a

negative perceptual bias: v(X) is less than X when X is large, and hence the implied value function

is concave overall.

We test implications of these value functions after presenting our main experiment. In partic-

ular, we test whether demand for risk taking is higher in the increasing condition where the prior

induces a convex value function, compared to the decreasing condition. In the next section, we

turn to our experimental tests of efficient coding.

III. Experimental Tests

In this section, we provide experimental tests of the model. We first examine how the volatility of

the payoff distribution affects risky choice. We then analyze how the shape of the payoff distribution

affects risky choice.

1. Experiment 1: Volatility manipulation

Our first experiment tests the model by manipulating the volatility of payoffs. We pre-register

the experiment and recruit 150 students from the University of Southern California to participate

in the laboratory (see Appendix B for the pre-registration document). Each subject completes two

tasks: a risky choice task and a perceptual choice task. All subjects complete the risky choice task

first, followed by the perceptual choice task. We chose this ordering to minimize any fatigue effects

in the risky choice task, which is our main task of interest. Subjects were paid a $7 show-up fee,
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in addition to earnings from each task.

1.1. Design of the risky choice task

On each trial, subjects choose between the risky lottery (X, p; 0, 1 − p) and the certain option

(C, 1). The probability p is fixed at 0.5 for all trials. The values ofX and C are drawn independently,

and we manipulate the distribution of each payoff across two volatility conditions. In the high

volatility condition, X is drawn uniformly from [8, 32], and C is drawn uniformly from [4, 16]. In

the low volatility condition, X is drawn uniformly from [16, 24], and C is drawn uniformly from [8,

12].

We chose the above design parameters for two reasons. First, because our goal is to isolate the

effect of volatility, we chose parameters such that the mean of each payoff distribution is constant

across conditions; the mean of X is fixed at 20 and the mean of C is fixed at 10. Second, our

parameter values satisfy the conditions in (8): the distributions of X and C are independent, and

pX and C are identically and uniformly distributed. These conditions imply that the efficient

coding rules are the same, regardless of whether the subject’s objective is to maximize mutual

information, the probability of an accurate choice, or the expected financial gain. This is an

important feature of our design. Although many tests of efficient coding in sensory perception

assume that the DM maximizes mutual information, it is not obvious whether the DM has the

same objective in economic choice (Ma and Woodford, 2020). Thus, our design is optimized to test

generic predictions of efficient coding.

[Place Figure 4 about here]

Figure 4 shows a schematic of the task design. Each subject goes through both the high

and low volatility conditions; the order of the two conditions is randomized across subjects. In

each condition, there are 300 trials, which are broken into two phases: an initial “adapt” phase

(30 trials) and a subsequent “test” phase (270 trials). The adapt phase is intended to allow the

subjects to adapt to the condition-specific payoff distribution; the test phase contains the trials that

we are interested in analyzing.19 While such a large number of trials is not typical in economics

19As argued in Woodford (2020), “Of course, the appropriate prior has to be learned; one should therefore expect
the mapping from objective magnitudes to estimates to shift over the course of an experimental session, especially at
the beginning.” (footnote 21). Our design explicitly builds in an explicit “initial adaptation” phase for which we are
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experiments, this design feature is important for providing a clean test of our hypothesis.

Specifically, in order to generate a clean test of efficient coding, we want to compare decisions

on the same choice sets across the two volatility conditions. One constraint we face, when designing

these “common trials” in the test phase, is that the lottery payoffs must fall in the support of the

distribution of both conditions. Our goal is to maximize the number of common trials that satisfy

this constraint, while staying faithful to the statistical properties of each payoff distribution.

To do so, we first note that the support of the low volatility distribution is a subset of the support

of the high volatility distribution; as a result, payoffs on common trials must fall in the support

of the low volatility distribution. Specifically, with 1/9 probability, a pair (X,C) drawn from the

high volatility distribution falls in the support of the low volatility distribution. Therefore, in each

condition, we designate 30 of the 270 trials in the test phase as common trials. These common

trials are identical across conditions, and we generate them by drawing 30 pairs of (X,C) over

approximately equally-spaced grid points of the low volatility distribution (see Table 1 for exact

values). At the subject level, the location of each common trial is randomized across the 270

possible test trial locations in each condition.

[Place Table 1 about here]

We then draw the remaining 240 test trials in the low volatility condition from the low volatility

distribution. For the remaining 240 test trials in the high volatility distribution, we draw (X,C)

uniformly from the high volatility distribution, but critically, we “re-draw” the pair (X,C) if it falls

in the support of the low volatility distribution—since this part of the high volatility distribution is

already covered by the common trials. As a result, when combined with the 30 common trials, the

distribution of payoffs across all trials in each volatility condition accurately reflects the appropriate

population distribution. In sum, common trials simultaneously serve two purposes: they allow for

a clean comparison of behavior across conditions while also reinforcing the prior on subsequent

trials.

Subjects are not explicitly informed about the payoff distributions from which X and C are

drawn. We believe that such a design is more natural than telling subjects the payoff distributions

that they will experience. In particular, if the experimenter explicitly gives information about

less interested in analyzing behavior.
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the distribution of payoffs (which is rarely given in experiments on risky choice), subjects may

artificially direct their attention to this information. This, in turn, could generate an experimenter

demand effect that threatens the interpretation of our efficient coding tests. Furthermore, our

design choice enables us to test for learning effects, which are important when conducting our

within-subject analyses.

One of the six-hundred trials was randomly selected for payment and the subject was paid

according to their choice on the randomly selected trial. The average earning for the risky choice

task was $10.14. The exact instructions that were given to subjects before the experiment are

provided in Appendix B.

1.2. Results from the risky choice task

Reduced form results

We produce a large dataset that contains 90,000 total observations across all subjects and

conditions (600 observations per subject). Before proceeding with our analyses, we take two steps

to clean the data. First, as part of our pre-registered data exclusion, we drop one subject who

chose the certain option on all trials in the first condition. Second, we drop trials for which subjects

exhibit an excessively fast response time of less than 0.5 seconds, which constitutes 7.7% of the

data. This second step in the data cleaning process was not pre-registered, but unsurprisingly these

fast decisions are not responsive to the underlying payoff values. As such, they only add noise to

our tests of efficient coding.20 After applying the two data exclusions, we are left with 82,851 trials

across the first and second conditions, of which 74,277 trials are in the test phase.

We begin our analysis with between subjects tests by using all trials in the test phase of the first

condition—in which subjects are randomized into either the high or low volatility condition. We

find that, on average, subjects choose the risky option on 45.8% of trials (standard error: 1.6%).

Panel A of Figure 5 plots the probability of risk taking as a function of the difference in expected

values between the two options, pX − C, for all test trials from the first condition.

[Place Figure 5 about here]

20Changing the exact response time cutoff does not qualitatively change our results. If we increase the response
time cutoff, the results we later present in Figure 5 and Table 2 become stronger.
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The figure shows a striking difference across conditions: a $1 increase in pX−C leads to a greater

increase in the likelihood of choosing the risky lottery in the low volatility condition, compared

to the high volatility condition. This is our first piece of evidence supporting the hypothesis that

efficient coding does indeed extend into the domain of risky choice. Moreover, the model we present

in Section II assumes that the DM first efficiently codes the payoff values of X and C separately,

and then compares the perceived expected value of each option. Thus, the effect in Panel A should

also be observed when separately analyzing X and C. Panel B of Figure 5 provides evidence that

behavior is indeed consistent with efficient coding of each payoff separately. Taken together, Panel

A and Panel B of Figure 5 are consistent with the model’s implications in Figure 3.

To provide formal tests of efficient coding, we conduct a series of regressions in which we account

for heterogeneity across subjects in baseline sensitivity to X and C. Specifically, we conduct mixed

effects linear regressions in which there is a random effect on both X and C (in addition to a

random intercept). The dependent variable takes the value of one if the subject chooses the risky

lottery, and zero otherwise. Column (1) of Table 2 shows that risk taking increases significantly

in X and decreases significantly in C among all trials in the test phase of the first condition. The

critical coefficients are those on the interaction terms, X×high and C×high, which are significantly

negative and positive, respectively, each at the 1% level.21

[Place Table 2 about here]

Importantly, our design enables us to provide a cleaner test of efficient coding by restricting to

only the common trials in the test phase, which are identical across volatility conditions. Column

(2) shows that the interaction terms remain significant at the 1% level. This finding represents

strong support for efficient coding: for the same choice sets, a given increase in X or C leads

to a larger change in risk taking when payoffs are drawn from the low volatility distribution,

compared to the high volatility distribution. The results in Columns (1) and (2) provide results

from between subjects tests, as they only use data from the first condition that subjects experience.

Our design also enables us to examine how coding varies within subjects over time when faced with

21We also estimated mixed effects logistic regressions. However, with three random effects, mixed effects logistic
regressions do not converge to numerically stable estimates. As an alternative, we estimated a series of logistic
regressions without random effects, in which we pool subjects and cluster standard errors by subject. Table E1 shows
that the results are consistent with those presented in Table 2. Our preferred specification is the mixed effects linear
regression because it accounts for heterogeneity across subjects.
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a change in the environment. While our model does not make predictions about adaptation, we can

provide tests of whether behavior changes in the direction predicted by efficient coding as subjects

experience a shift in the environment. Recall that halfway through the risky choice task, the payoff

distribution switches. Thus, by re-estimating the regression in Column (2) using data from both

volatility conditions for each subject, we can measure the effect within subjects.

Column (3) shows that the coefficients on the interaction terms have the predicted sign, though

the effects are weaker compared to the between subjects tests. The coefficient on the interaction

term X×high is significant at the 10% level, while the coefficient on C×high is significant at the

5% level. One reason for these weaker effects is that, at the beginning of the second condition,

subjects may still be adapted to the first condition. To allow for longer adaption in the second

condition, we restrict to only trials from the last half of the second condition (trials 451 through

600). Column (4) shows that the magnitudes of the interaction effects do indeed get larger.

In Columns (5) and (6) we further disaggregate the data based on whether the subject ex-

periences the low or high volatility condition first. Column (5) shows that when subjects begin

with the low volatility condition, the coefficients on X×high and C×high remain significant at

the 5% level. This result is important because it rules out an alternative theory whereby subjects

encode payoffs with noise, and through experience with a payoff, the payoff-specific perceptual noise

decreases over time. Such a theory could explain our between subjects results, since subjects in

the low volatility condition experience low volatility payoffs more frequently than subjects in the

high volatility condition. The crucial insight from the within subject test in Column (5) is that

under this alternative “learning from experience” theory, behavior in the second (high volatility)

condition should be less noisy, as subjects experience the same set of 30 common trials for a second

time. Yet we find that the effect has the opposite sign, which is instead consistent with noisy and

efficient coding.

Column (6) provides results for those subjects who experience the high volatility condition first,

and we see that the results have the predicted sign, but the effects become weaker. The coefficient

on C×high remains significantly greater than zero at the 5% level, but the coefficient on X×high

is no longer significantly different from zero. We speculate that it is easier for subjects to detect

a change in the environment when shifting from low volatility to high volatility, because “outlier

payoffs” that are never experienced in the first condition begin to appear in the second condition.
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In contrast, when moving from a high volatility to low volatility environment, the information that

signals a change in environment is less salient.22

Response times

Not only are subjects more sensitive to payoffs in the low volatility condition, but they also

implement decisions more quickly in the low volatility condition. Among common test trials,

subjects in the high volatility condition take an average of 2.20 seconds vs. 1.97 seconds in the low

volatility condition (p-value = 0.01 for difference in the mean log(response time) estimated with a

mixed effects linear regression). The fact that response times are significantly shorter in the low

volatility condition suggests that our results on risk taking would become stronger if we account

for sensitivity in choice per unit time. We provide more details on response times in Appendix C.

1.3. Design of the perceptual choice task

Recall that all the implications of our model are driven by the noisy encoding of X and C. In

particular, we make two simplifying assumptions: (i) there is no noise in encoding the probability

p, and (ii) there is no noise in computing the product of p and E[X̃|Rx]. In reality, there is likely

to be noise in both of these processes, which could potentially be responsible for some of the above

experimental results.

To provide a more targeted test of the key efficient coding mechanism, subjects participate in

a second “perceptual choice task.” In this task, subjects still need to perceive X, but do not need

to perceive the probability p or integrate probabilities with perceived payoffs. Given that the noisy

encoding of payoffs is sufficient to generate our main theoretical predictions in Section II, we should

still find evidence that the perception of X depends on the recent stimulus distribution even when

there is no need to perceive the probability p.

Our perceptual choice task is informed by work from the literature in perception of symbolic

numbers (Moyer and Landauer, 1967). We build on the design of Dehaene, Dupoux, and Mehler

(1990), who present subjects with an Arabic number between 31 and 99 on each trial of their

22Some evidence that supports this conjecture comes from the time series of response times. We find that when
subjects shift from the low to high volatility condition, there is a spike in response time which may be triggered by
payoffs that were previously not experienced (see the upper panel of Figure C2). However, when subjects switch from
high to low volatility condition, there is no corresponding spike, since there are no outliers (see the lower panel of
Figure C2). We return to discussing the topic of adaptation in Section IV.1 and Appendix C.
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experiment. The subject’s task is simply to classify whether the Arabic numeral presented on the

screen is larger or smaller than the reference level of 65. Dehaene et al. (1990) find that as the

stimulus gets closer to the reference level, response times increase and accuracy decreases. These

results are consistent with the noisy encoding of Arabic numerals, which lies at the foundation of

the model of risky choice we present in Section II.

One notable feature of the Dehaene et al. (1990) experiment is that the stimulus distribution

is held constant throughout the experiment. Here, we exogenously vary the stimulus distribution

across two conditions: a high volatility condition and a low volatility condition. In the high

volatility condition, subjects are presented with an Arabic numeral, which we denote by X, that is

drawn uniformly from integers in the set [31, 99]\{65}. In the low volatility condition, X is drawn

uniformly from integers in the set [56, 74]\{65}. In each condition, subjects are asked to classify

whether X is above or below the reference level of 65. Each subject completes both conditions,

and we randomize the order of conditions across subjects. Figure 6 gives a schematic of the design.

[Place Figure 6 about here]

In all other respects, the perceptual choice task design follows closely the design of the risky

choice task. In each condition, there is an initial set of 60 trials which are intended to allow

subjects to adapt to a given distribution. As outlined in our pre-registration document, we only

analyze behavior after the adaptation phase in the subsequent 340 test trials. To generate a clean

comparison across conditions, we focus our main analysis on those trials in the test phase for which

the stimulus numbers fall in the range of common support across the two conditions, [56, 74].23 As

in the risky choice task, the restriction to common stimuli is crucial because it allows us to identify

the effect of efficient coding by varying only the distribution of non-common trials in the test phase.

We pay subjects based on both the accuracy and speed of their classifications. Specifically,

subjects earn a payoff of $(15×accuracy − 10×avgseconds), where accuracy is the percentage of

correctly classified trials, and avgseconds is the average response time (in seconds) across all trials

23Similar to the structure of our risky choice task, we designate 90 out of the 340 test trials as common trials. In
both conditions, the 90 common trials are created by sampling each element in the low volatility condition 5 times.
The common trials are randomly placed among the 340 test trials. The remaining 250 trials in the low volatility
condition are drawn from the low volatility distribution. The remaining 250 trials in the high volatility condition
are drawn with 50% probability from a uniform distribution over [31, 55] and with 50% probability from a uniform
distribution over [75, 99]. This procedure guarantees that the empirical distribution of X matches the population
distribution in both conditions.
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in the perceptual choice task. We incentivize fast responses in this task (but not in the risky

choice task) in order to avoid “ceiling effects” in the choice data where subjects would approach

100% accuracy.24 While a ceiling effect is not problematic on its own, it would cause difficulty in

detecting any differences in the choice data across experimental conditions. The average earning

for the perceptual choice task was $8.70.

1.4. Results from the perceptual choice task

We begin by reporting results for between subjects tests using all test trials from the first

condition. Subjects correctly classify the number on 95.0% of trials (standard error: 0.1%) with

an average response time of 0.557 seconds (standard error: 0.001). Two out of the 150 subjects

exhibit an average response time of only 0.05 and 0.10 seconds, which indicates that they used a

guessing strategy, and thus we exclude them from all subsequent analyses (their average accuracy

rates were 51.8% and 55.0%, respectively).25

[Place Figure 7 about here]

Panel A of Figure 7 plots the proportion of trials that subjects classified X as larger than the

reference level of 65, for each value of X. Consistent with previous research on numerical cognition,

we see that subjects exhibit errors in classification, and more importantly, the errors increase as X

approaches 65. To be clear, while it is unsurprising that subjects exhibit errors, the fact that error

frequency correlates with X, provides evidence consistent with noisy coding. The novel aspect of

our design that enables us to test for efficient coding, is the manipulation across two volatility

conditions.

Among trials for which X ∈ [56, 74], we find that subjects exhibit significantly greater accuracy

in the low volatility condition, compared to the high volatility condition (95.0% vs. 92.3%, with

p-value < 0.001 under a mixed effects linear regression). Not only are subjects more accurate in

the low volatility condition, they also respond significantly faster (0.576 seconds vs. 0.611 seconds,

with p-value = 0.03 under a mixed effects linear regression for difference in the mean log(response

time)). Panel B of Figure 7 shows that response times (on trials where subjects classify the stimulus

24Earlier experiments on number classification, e.g., Dehaene et al. (1990), typically instruct subjects to answer
as quickly as possible, though the instructions do not contain financial incentives as they do in our experiment.

25Including these two subjects in our subsequent analyses does not affect any of the main results.
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correctly) become longer as X approaches 65, and they are shorter in the low volatility condition

across the distribution of X.26

Next, we compare the slopes across the two conditions from Panel A of Figure 7. Efficient

coding predicts a steeper slope in the low volatility condition. Before proceeding to the test, we

note that in this task, the conditions in (8) are no longer satisfied because there is only one variable

that the DM needs to encode; thus, our tests in this section assume that the DM maximizes

mutual information. To formally test for the difference in slopes, Table 3 presents results from a

series of mixed effects logistic regressions. The dependent variable in our regression takes on the

value of one if the subject classifies X as above 65, and zero otherwise, and we only use data for

which X ∈ [56, 74]. Column (1) shows that the coefficient on X is significantly positive, indicating

that subjects’ propensity to classify X as greater than 65 is increasing in X. More importantly,

we find that the coefficient on the interaction term, X×high, is significantly negative, indicating

that choices are noisier on trials in the high volatility condition. The next two columns indicate

that the effect remains significant when examining only numbers in the 60s decade (Column 2) and

examining only numbers outside the 60s decade (Column 3).27

[Place Table 3 about here]

In Columns (4)-(6) of Table 3, we pool data across both conditions for each subject, which

provides within subject tests of efficient coding. We see that, for each specification across these

three columns, the coefficient on the interaction term remains significant at the 1% level. We also

note that the coefficient on the high dummy variable is significantly positive in all specifications

except Column (3). Moreover, there appears to be an asymmetry in the choice curve in Panel A of

Figure 7, where accuracy is higher for numbers above the reference level compared to those below

the reference level. Previous literature has observed the same asymmetry in an almost identical

task, which may be driven by early stages of perceptual processing that are unrelated to the

26The fact that both error rates and response times increase as X approaches the reference level of 65 is consistent
with the “distance effect” in Moyer and Landauer (1967) and Dehaene et al. (1990).

27We also find substantial heterogeneity in accuracy and response times across the 147 subjects we analyze in this
task. (Note that we examine 147 out of 150 total subjects because we exclude 1 subject based on performance in the
risky choice task and 2 subjects based on performance in the perceptual choice task.) Moreover, average accuracy
and average response time are significantly positively correlated across subjects (p-value = 0.01 and p-value = 0.02,
in the high and low volatility condition, respectively). The positive correlation is consistent with the well-known
speed accuracy tradeoff in perceptual decision-making.
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decision-making system (Dehaene, 1989; Hinrichs, Yurko, and Hu, 1981; Dehaene et al., 1990).28

1.5. Model estimation

In this section, we structurally estimate the model in order to assess its quantitative fit to the

experimental data.

Estimation of the risky choice task

We first estimate the model for each subject using data from the risky choice task. Recall that

the model’s one free parameter, n, denotes the number of binary readings that are used to generate

the noisy signal Rx (and Rc). That is, n represents the amount of “perceptual resources” the brain

has: the greater n is, the more precise is the representation of risky payoffs.

To estimate n, we use maximum likelihood. Specifically, for each subject, we maximize the

following log likelihood function over n, using choice data from the test phase of the first condition:

LL(n|y) =
∑300

t=31
yt · log(Prob(yt|n)) + (1− yt) · log(1− Prob(yt|n)), (16)

where y = {yt}300t=31, and yt denotes the subject’s choice on trial t; yt = 1 if the subject chooses the

risky lottery, and yt = 0 if the subject chooses the certain option. In addition, Prob(yt|n) denotes

the model predicted probability of choosing the risky lottery given n, Xt, and Ct; it is computed

using equation (14) from Section II.3. We maximize the log likelihood function in (16) by searching

over integer values of n in [5, 40]. We find that the average n across subjects is 8.5 with a standard

deviation of 9.7, indicating substantial heterogeneity.

Recall that our model of efficient coding assumes linear utility; the DM ’s valuation of a payoff

X is given by E[X̃|Rx]. Here we also consider a more general model in which the DM first forms

an optimal estimate of the payoff that is offered on a given trial, and then converts this estimate

into subjective utility by applying a nonlinear transformation. We modify the baseline model by

assuming that the DM assesses the value of a payoff X by (E[X̃|Rx])α, where α ≤ 1 captures

28Dehaene (2008) notes that there is a discrete jump in response times for numbers in the range [60, 69], which
he attributes to the extra attention needed to focus on the second unit of the number to distinguish it from the
reference level. Indeed, Dehaene (2008) estimates a random walk model and finds that the “non-decision time”—
which corresponds to the time needed to implement early sensory processes and motor preparation—is higher for those
numbers in the range [60, 69]. Because our objective is to test for efficient coding and thus compare behavior across
conditions, our tests do not depend critically on the mechanism that generates the asymmetry within a condition.
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intrinsic risk aversion. Under this model, the coding rule presented in equation (4) is still optimal

if the DM ’s objective is to maximize the mutual information between the stimulus and its noisy

signal, but the coding rule is no longer optimal when the DM ’s objective is to maximize expected

payoff.

With this caveat in mind, we estimate the modified model in which the DM chooses the risky

lottery if and only if p·E([X̃|Rx])α > E([C̃|Rc])α.29 We use the same maximum likelihood procedure

as above, but for each subject we now estimate two parameters (n, α). We find that the best fitting

parameter pair, averaged across subjects, is n = 10.0 and α = 0.93. These results indicate that

the average subject exhibits a modest degree of intrinsic risk aversion with the small stakes in

our experiment. We can also quantitatively assess the validity of our linear utility assumption

by running an Akaike information criterion (AIC) test at the subject level. For each subject, we

compare the AIC across the baseline model in which we constrain α = 1 and the generalized model.

We find that 54% of subjects are best fit using the restricted model with α = 1. Thus, our baseline

assumption of linear utility is not overwhelmingly restrictive. At the same time, the model provides

a better fit to a substantial number of subjects when estimated payoffs are subsequently passed

through a nonlinear utility function.

To assess the model’s out-of-sample fit, we re-estimate the model using a training set and

then measure its fit on a distinct validation dataset. Specifically, for each subject, we record the

best fitting (n, α) by maximizing the log likelihood function in (16), but using data only from the

even-numbered trials in the test phase of the first condition. We then use the estimated (n, α) to

compute the theoretical probability of choosing the risky lottery for each odd -numbered trial in the

test phase of the first condition. Lastly, we bin trials according to their theoretical probabilities,

and for each bin, we compute the proportion of trials on which subjects choose the risky lottery.

[Place Figure 8 about here]

Figure 8 presents the results of out-of-sample tests across four separate cuts of the data. In

the top panel, we split the data based on whether the first condition is the high or low volatility

condition. The red forty-five degree line provides the prediction of the model, conditional on subject-

29As in equation (14), we also assume that when p ·E([X̃|Rx])α = E([C̃|Rc])α, the DM randomly chooses between
the two options.
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specific parameters of (n, α). If the model perfectly fits the data, then all blue dots would lie on

the forty-five degree line; visually, we see a good match between the model-implied probabilities

and the data across the entire probability domain of [0, 1]. The bottom left panel pools the data

together from the two top panels.

In order to quantitatively explore the core mechanism of efficient coding—which predicts that

perception of a given monetary amount depends on the environment—we also perform a counterfac-

tual analysis. Our goal here is to understand how the model’s prediction varies across environments,

holding constant the choice set. To do so, we analyze how a subject’s perception of a choice set

in the low volatility condition would change if the same choice set was instead presented in the

high volatility condition. In particular, we repeat the analysis used to generate the top right panel

of Figure 8—which uses data only from the low volatility condition—but we counterfactually as-

sume that the subject’s prior is the high volatility payoff distribution. In the bottom right panel

of Figure 8, we plot the relationship between data on choices in the low volatility condition and

the counterfactual probabilities. We see that this counterfactual analysis results in a systematic

mismatch between model predicted probabilities and data, both at high and low ends of the prob-

ability domain. A formal AIC test demonstrates that the model which assumes a low volatility

prior provides a better fit to the data compared to the counterfactual model (AIC value for the

model which assumes a low volatility prior is 9,729; and AIC value for the model which assumes

a high volatility prior is 9,803). These results demonstrate that the environmental distribution to

which the subject has adapted, provides important information about the subject’s perception of

the choice set, and hence, her probability of risk taking.30

Estimation of the perceptual choice task

We now estimate the model for each subject using data from the perceptual choice task. The

maximum likelihood procedure we implement is nearly identical to that from (16). For each subject,

we maximize the following log likelihood function over n, using choice data from the test phase of

30It is not feasible to provide the analogous analysis for data in the high volatility condition, since a majority
(8/9) of stimuli in that condition fall outside the support of the low volatility distribution, and thus the model would
not make any reasonable predictions in such a case.
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the first condition:

LL(n|z) =
∑400

t=61
zt · log(Prob(zt|n)) + (1− zt) · log(1− Prob(zt|n)), (17)

where z = {zt}400t=61, and zt denotes the subject’s choice on trial t; zt = 1 if the subject classifies

the stimulus Xt on trial t as greater than 65, and zt = 0 if the subject classifies Xt as less than 65.

The term Prob(zt|n) is the model predicted probability that the subject perceives Xt to be greater

than 65. We maximize (17) over integer values of n in the range [5, 40]. The best fitting value of

n, averaged across all subjects, is 15.8, with a standard deviation of 13.1.

Given that each subject completes both the risky choice task and the perceptual choice task,

our design enables us to compare how the latent structural parameter n compares across these two

tasks. Two observations are worth noting. First, the average value of n is lower in the risky choice

task than in the perceptual choice task. This difference is likely driven by the fact that the risky

choice task is more complex, and hence additional sources of noise enter the decision process (e.g.,

encoding the probability p and integrating p with E[X̃|Rx]), which the model accounts for through

a lower value of n.

Second, we test for a correlation between the estimated n from each task, across subjects.

This test is important because it allows us to assess whether errors in numerical discrimination

from the perceptual choice task can explain variation in the risky choice task. We find a modest

but significant rank correlation of 0.30 between parameters from each task when allowing α ≤ 1

(p-value < 0.001). The correlation remains significant at 0.26 when using the estimated n from

the restricted model where α = 1 for all subjects (p-value = 0.001). The results are also robust to

using Pearson correlations for both models (p-value = 0.002 for unrestricted model; p-value = 0.001

for restricted model). These positive correlations demonstrate that, across subjects, variation in

perception partly explains variation in risk taking behavior.

2. Experiment 2: Shape manipulation

In the experiments reported in the previous section, we focused on manipulating the range (and

hence the volatility) of the payoff distribution while holding its mean constant. In this section,

we investigate whether manipulating the shape of the payoff distribution, while holding the range
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constant, affects risk taking in the manner predicted by efficient coding. Such a manipulation

is important for at least two reasons. First, it allows us to further distinguish between efficient

coding models and alternative theories in which behavior is affected only by the range of stimuli

encountered (and the current choice set). Second, such an experiment provides a fundamental test

of Weber’s law.

As in the risky choice task from Experiment 1, we design an experiment in which subjects

are presented with choice sets of the form {(X, 0.5; 0, 0.5); (C, 1)}. In one condition, X is drawn

from a linearly decreasing distribution over the range [8, 32]. In another condition, X is drawn

from a linearly increasing distribution over the same range.31 In both conditions, C is drawn

from a uniform distribution over [2, 18]. We manipulate only the distribution of X across the two

conditions, in order to isolate the induced shift in the value function from a single variable.

As shown in Panel B of Figure 2, under efficient coding, the decreasing payoff distribution of X

leads to a concave value function v(X). Conversely, the increasing distribution gives rise to a convex

v(X). In this case, efficient coding predicts a type of “anti-Weber’s” law: perception becomes more

precise as payoff values increase, and small payoffs are biased upwards towards the mean of the

payoff distribution. A provocative implication of such a convex value function, of course, is that it

induces risk seeking behavior.

To test this implication, we create a set of common trials that are presented in both experimental

conditions, which we use to generate the data for our main tests. Specifically, we create 10 common

trials, where we fix C at $6.09 and vary X from $9.04 to $18.06 in approximately $1 increments,

as shown in Table 4; we focus our design on small values of X, where the value function is most

locally convex for the increasing distribution.

[Place Table 4 about here]

There are 300 trials per condition, and each of the 10 common trials is presented every 30 trials.

Except for the 10 common trials, the choice sets in each condition are drawn from their respective

payoff distribution (either increasing or decreasing).32

31Specifically, both the decreasing distribution and the increasing distribution take the form of (15) in Section II.
We set Xl to 8 and Xu to 32 for both conditions; and we set ∆ to −1/30 for the decreasing distribution and to 1/30
for the increasing distribution.

32The design in this task is similar to that of Payzan-LeNestour and Woodford (2020) who insert a “test trial”
every 40 trials, though their design is implemented in the domain of a perceptual task where a subject is incentivized
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Our main testable prediction is that demand for the risky lottery among choice sets on common

trials will be higher in the increasing condition compared to the decreasing condition. We pre-

register the experiment and recruit 40 students from the University of Southern California to

participate in the laboratory, none of whom participated in the previous volatility experiment

(see Appendix B for the pre-registration document). Each subject completes the task and is paid

according to one randomly selected trial, in addition to a $7 show-up fee. The average total earning

for the task, including the show up fee, is $16.63. The experimental instructions for this task can

be found in Appendix B.

2.1. Results from Experiment 2

We begin by cleaning the data and removing trials for which subjects responded in less than

0.5 seconds, which constitutes 4.9% of the dataset. Of the remaining 22,835 trials, subjects choose

the risky lottery on 41.3% of trials (standard error: 2.6%).

As outlined in our pre-registration document, our tests for this experiment are all conducted

within subjects. Table 5 presents results from mixed effects linear regressions, where the dependent

variable takes the value of one if the subject chooses the risky lottery, and zero otherwise. In Column

(1) we use all data from the experiment, and find that controlling for X and C, subjects are 2.5%

more likely to choose the risky lottery in the context of the increasing distribution, compared to

the decreasing distribution (p-value < 0.001). This result, however, relies on the assumption that

the linear controls for X and C fully account for differences across current choice sets.

[Place Table 5 about here]

To provide a cleaner test of the hypothesis that risk taking is greater in the increasing condition,

in Column (2), we restrict to only the 10 common trials in each condition. Recall that for these

common trials, C is fixed at $6.09. Hence, we remove the control for C. Compared to Column (1),

we find that the effect size doubles and subjects are 5.4% more likely to take risk on common trials

from the increasing distribution (p-value = 0.02). This result implies that for the same ten choice

sets, the same subject is more willing to take risk after being recently exposed to an increasing

distribution of X.

to discriminate between shades of grey.
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We interpret this result as a direct effect of efficient coding. Because C is fixed on each common

trial—and because the distribution of C is fixed across conditions—all variation in risk taking must

come through X. As discussed earlier, Panel B of Figure 2 shows that efficient coding generates a

convex value function when the prior distribution is increasing. In this case, low values of X occur

infrequently, resulting in an upward perceptual bias which induces risk taking. In contrast, when

the prior distribution is decreasing, the implied value function is concave. In this case, low values of

X occur frequently, and thus they are not biased. Overall, the difference in perceived valuation of

X gives rise to higher risk taking when common trials are drawn from the increasing distribution,

consistent with the findings reported in Column (2).

While the difference in risk taking is predicted to be higher for small values of X, the precise

value of X at which the predicted difference switches sign depends on the capacity parameter n.

To get a more quantitative handle on exactly where this cutoff is located, we compute the cutoff

implied by the distribution of (n, α) that we estimated from the 147 subjects in the risky choice task

from Experiment 1; the implied cutoff is X = 15.79.33 In Column (3) of Table 5, we re-estimate

the regression restricting to test trials for which X < 15.79, and we find that our results get slightly

stronger, as the average difference in risk taking across conditions is 6.8% (p-value = 0.02).

IV. Discussion

1. Dynamics across trials and within trials

The theoretical framework we present in Section II is a static model of risky choice, and hence

does not tackle the important question regarding how the DM learns the prior distribution. For

simplicity, we assume that, in our experiments, subjects are fully adapted to the population dis-

tribution after completing an initial set of pre-registered “adapt trials.” We emphasize that this

assumption is not trivial, particularly because the DM ’s learning problem is more complex than

in standard settings, where Bayesian inference would typically generate convergence. The addi-

tional layer of complexity is due to the DM ’s inability to observe the sequence of objective payoffs,

and hence the DM must learn from the history of perceived payoffs (Robson and Whitehead,

33Because the subjects from each of the two experiments are recruited from the same subject pool, the distribution
of (n, α) should be largely similar.
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2018; M lynarski and Hermundstad, 2019; Aridor, Grechi, and Woodford, 2020).

In an extension to their main model, HWP consider an environment in which it is costly to

acquire and store information about the entire history of the stimulus distribution. They argue that

such a constraint is most relevant in situations where the DM expects the distribution of values

to change frequently. Under this criterion, the relevance of a large cost to acquiring and storing

information about the prior is fairly minimal in our experiments, because the payoff distribution

changes only once over 600 trials, and never changes in our between subjects tests. Nonetheless,

understanding how the DM learns the prior in more general environments is clearly an important

area for future work (Payzan-LeNestour and Woodford, 2020), and the mechanisms through which

past stimuli are recalled from memory are likely to have important implications for efficient coding

of economic stimuli (Kahana, 2012; Bordalo, Gennaioli, and Shleifer, 2020; Wachter and Kahana,

2020).

The above discussion is in regard to the dynamics across trials in our experiment. There is

also a dynamic component to a single decision within a trial, which we have analyzed empirically.

Specifically, we find that response times on common trials are significantly longer in the high

volatility condition compared to the low volatility condition of our first experiment. There is also

a striking similarity between the response time patterns in the risky choice and perceptual choice

tasks (see Panel A of Figure C1 and Panel B of Figure 7); the similarity in response times provides

another piece of evidence in favor of a common mechanism that governs both types of choices. A

natural way to extend our framework to address variation in response times would be to allow the

DM to draw a sequence of noisy signals, {RX,i}Ni=1 for a given payoff X. The time it takes to execute

a decision would then reflect the number of signals drawn, which is a common interpretation of

sequential sampling models from mathematical psychology (Ratcliff, 1978; Bogacz, Brown, Moehlis,

Holmes, and Cohen, 2006; Krajbich, Armel, and Rangel, 2010), and more recently, from economics

(Woodford, 2014; Fudenberg, Strack, and Strzalecki, 2018; Hébert and Woodford, 2019).

2. Comparison with alternative theories

In this section, we discuss alternative models of behavior and how their predictions relate to

our experimental results. As noted in the Introduction, the main prediction we test in Experiment

1—that sensitivity to payoff values increases when the dispersion of potential values decreases–
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is also shared by models of “normalization” (Rangel and Clithero, 2012; Louie et al., 2015). A

particularly relevant set of normalization models are those in which value is normalized based

on the range of potential stimuli (Soltani et al., 2012; Rustichini et al., 2017). Under this class

of models, the subjective value of a payoff depends only on the payoff itself and the range of

potential payoffs. The results from our first experiment strongly support the predictions of range

normalization models, and specifically, they highlight the interpretation that normalization can

implement normative principles of efficient coding.34 See Appendix D for more detail.

At the same time, range normalization cannot explain all our experimental results. In Ex-

periment 2, we hold constant the range of payoff values while changing the shape of the payoff

distribution across conditions. Our data show systematic differences in the demand for risk across

conditions, whereas models with range normalization do not predict any differences. Thus, range

normalization does not offer a complete picture of how the distribution of values affects behavior.

In the decision-by-sampling (DbS) model by Stewart et al. (2006), the DM ’s subjective value

of a stimulus is given by its rank within a distribution of values recalled from memory. To the

extent that the distribution of recalled values is related to the prior distribution that we focus on

in this paper, DbS and efficient coding models make qualitatively similar predictions. In fact, Bhui

and Gershman (2018) show that efficient coding can serve as a normative foundation for DbS. We

interpret the data from both of our risky choice experiments as novel evidence consistent with the

core mechanism in DbS.35

Kőszegi and Rabin (2007) (KR) offer a model of risky choice where the reference point is given

by rational expectations about outcomes from a reference lottery. At a basic level, KR and efficient

34Not all models of normalization are grounded in principles of optimization; some are instead developed to describe
the decision process and its outcome. For example, in the Soltani et al. (2012) model, range normalization is assumed,
and its implications are shown to provide a good description of decoy effects in risky choice (though normalization
takes place over values on a single experimental trial, rather than over the history of trials experienced). In more
recent models, such as Rustichini et al. (2017), normalization is the outcome of an optimization procedure. Relatedly,
the prediction of greater sensitivity to attributes with a smaller range is a key assumption in the relative thinking
model by Bushong, Rabin, and Schwartzstein (2020).

35Our evidence also speaks to a recent controversy in interpreting tests of the DbS model. Stewart, Reimers,
and Harris (2015) and Walasek and Stewart (2015) claim to find supporting evidence for DbS by manipulating the
distribution of payoffs across choice sets, similar to the manipulation in our design. However, a re-analysis of the
experimental evidence finds that neither paper can be interpreted as supporting DbS (Alempaki, Canic, Mullett,
Skylark, Starmer, Stewart, and Tufanod, 2019; André and de Langhe, 2020). The issue arises from the fact that
behavior was analyzed on different choice sets across experimental conditions. In contrast, our design has the
important advantage of presenting a collection of choice sets that are common to both conditions, and the common
choice sets reflect the statistical properties of the environment assumed in the theory. Thus, our results should help
restore faith in the empirical validity of DbS. Moreover, our design provides a template for future experimental tests
of the DbS theory.
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coding share the feature that expectations shape the DM ’s perception of a lottery payoff. Yet an

important distinction between the two models is that in efficient coding, the driving force of the

model is the DM ’s expectation of a payoff value, once it has been presented in the choice set. In

KR, however, the driving force is expectations over which payoff value she is likely to receive as a

future outcome from the lottery. In Appendix D.1, we examine KR’s implications for our shape

manipulation task (Experiment 2). In most common specifications of expectations, KR does not

predict a difference in behavior as the shape of the payoff distribution varies.36

Salience theory is an alternative model of risky choice that is also grounded in principles of

perception and delivers context-dependent behavior (Bordalo et al., 2012). Under salience theory,

attention is drawn to those payoffs that are very different in percentage terms from a reference pay-

off. Bordalo et al. (2012) appeal to Weber’s law of diminishing sensitivity, in part, as a justification

for their definition of salience. Importantly, in their model, Weber’s law is an exogenous assump-

tion. In contrast, Weber’s law arises endogenously under efficient coding for prior distributions

that are decreasing, but an “anti-Weber’s” law will arise when prior distributions are increasing in

payoff values. In this sense, salience theory and efficient coding differ with respect to their primitive

assumptions.

Naturally, this leads the two models to generate different predictions in many environments. For

example, salience theory does not predict that risk taking will increase when the DM is adapted to

an increasing payoff distribution, as we find in our second experiment. Nor does it deliver stochastic

choice, where the degree of stochasticity changes systematically with the prior—as we observe in

our first experiment. At the same time, there are extant empirical patterns in the literature that

salience theory can explain, which the efficient coding model in Section II cannot, such as the

dependence of risk taking on the correlation between mutually exclusive lotteries.

3. Probability weighting

The efficient coding model we present in Section II can also be used to encode probabilities. As

we now show, one interesting implication of the efficient coding of probabilities, using the HWP

model, is that it generates the classic probability weighting function from prospect theory. Suppose

36Similarly, the related models of disappointment aversion (Bell, 1985; Loomes and Sugden, 1986) do not predict
a difference in behavior across the two conditions in our shape manipulation task.
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the DM holds prior beliefs about the payoff probability, given by the distribution, f(p). Also

suppose that, upon observing the probability p, the DM ’s perceptual system generates a noisy

signal, Rp, of p, based on a conditional distribution f(Rp|p).

Following HWP, we assume that the conditional distribution f(Rp|p) is given by

f(Rp|p) =

(
n

Rp

)
(θ(p))Rp(1− θ(p))n−Rp , (18)

where n represents the DM ’s coding capacity, and θ(p) is the coding rule that maps the value of

p to the probability that a given neuron emits a value of 1. When the performance objective is to

maximize the mutual information between p and Rp,

max
θ(p)

I(p,Rp), (19)

HWP show that the optimal coding rule is

θ(p) =
[
sin
(π

2
F (p)

)]2
, (20)

where F (p) is the cumulative density function of the DM ’s prior belief f(p).

Given the DM ’s prior, the conditional distribution f(Rp|p) from (18), and the coding rule

from (20), the value function of the probability p and the standard deviation for the subjective

valuation are

v(p) =
∑n

Rp=0
E[p̃|Rp] · f(Rp|p) (21)

and

σ(p) =

[∑n

Rp=0
(E[p̃|Rp])2f(Rp|p)− v(p)

]1/2
, (22)

respectively, where E[p̃|Rp], the posterior mean of p, conditional on Rp, is given by

E[p̃|Rp] =

∫ 1

0
f(Rp|p)f(p)pdp∫ 1

0
f(Rp|p)f(p)dp

. (23)

Importantly, the shape of v(p) depends crucially on the shape of the DM ’s prior distribution
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f(p). What is a good description of the naturally occurring distribution of probabilities, that the

DM would use as a prior? Stewart et al. (2006) present evidence that, in the English language,

probability phrases occur with higher frequency for extreme probabilities than for mid-range prob-

abilities, and large probabilities occur more often than small probabilities.37 Figure 9 presents a

numerical example, in which f(p) takes an asymmetric U -shape, as suggested by Stewart et al.

(2006). Interestingly, the resulting value function v(p) gives rise to both the overweighting of

small probabilities—that is, v(p) > p when p is close to zero—and the asymmetry in v(·)—that is,

v(0.5) < 0.5. Both are important features of the probability weighting function in prospect theory

(Tversky and Kahneman, 1992).

[Place Figure 9 about here]

An important observation is worth noting. While previous behavioral economics models have

been used to micofound the probability weighting function (Bordalo et al., 2012; Steiner and Stew-

art, 2016; Khaw et al., 2020; Enke and Graeber, 2020), the mechanism discussed here differs from

these models by explicitly linking the DM ’s prior distribution to the shape of the probability

weighting function. This link leads to a testable prediction: changes in f(p) cause systematic vari-

ation in the degree of probability weighting. Conducting such a test—perhaps by using a similar

technique that we use in our two experiments to manipulate the prior distribution—can help to

validate efficient coding as a source of probability weighting. We leave this test for future work.

4. Instability of preference parameter estimates

Our main experimental results are related to, but fundamentally distinct from, much work

in experimental economics that documents how risk taking depends systematically on the realized

lottery outcomes from previous choices (Thaler and Johnson, 1990; Weber and Camerer, 1998; Imas,

2016). Importantly, we find that, even when lottery outcomes are not presented to subjects, the

distribution of previous choice sets still causes systematic variation in behavior. As a result, efficient

coding may provide a distinct source of variation of behavior in typical lab experiments in which

37Stewart et al. (2006) also highlight that, in lab experiments designed specifically to study the shape of the
probability weighting function, the probabilities shown to experimental subjects are consistent with a distribution
that puts higher density on extreme probabilities. For instance, in Figure 8 of Stewart et al. (2006), the authors
reproduce the probability distribution used in Gonzalez and Wu (1999), which does put more weight on extreme
probabilities.
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preference parameters are elicited by presenting subjects with a sequence of choice sets (Broomell

and Bhatia, 2014).

The causal effect of past choices sets on risk taking is particularly relevant for newer methods

of eliciting preferences in which the ordering of choice sets is tailored in real time to a subject’s

history of choices. For example, Toubia, Johnson, Evgeniou, and Delquié (2013) and Chapman,

Snowberg, Wang, and Camerer (2019) present a sequence of choice sets to subjects that maximizes

the information gain for estimating parameters of the value function from prospect theory. Efficient

coding predicts that the optimal choice set to present to a subject should condition not only on the

history of the subject’s choices, but also on the history of the presented choice sets. Conditioning

on this extra aspect of the subject’s past experience should therefore aid in further optimizing

experimental designs.

V. Conclusion

We have conducted an experimental test of whether a core principle from neuroscience—efficient

coding—is a driving force in decision-making under risk. Our results provide strong evidence that

the DM ’s willingness to take risk depends systematically on the payoff distribution to which she

has recently adapted. The results are consistent with the noisy perception of lottery payoffs,

and moreover, we find that the particular distribution from which noise is drawn varies as an

optimal response to a change in the environment. In Experiment 1, we show that risky choice

becomes noisier as the volatility of the payoff distribution increases. In Experiment 2, we show

that the likelihood of taking risk increases as the payoff distribution changes from monotonically

decreasing to increasing. Together, the data indicate that risk taking is systematically unstable

across environments, in a manner that closely mimics the instability of sensory perception.

Our results raise a number of important directions for future work. There is a strong need

to understand how the DM adapts to a given environment based on the history of perceived

payoffs. This mechanism will of course depend on the DM ’s prior expectations about payoffs—

which we manipulate in our experiments—but also on higher order priors about the rate of change

of the environment. For instance, if the DM expects the environmental distribution to change

rapidly, then adaptation will also likely take place at a fast pace (Behrens, Woolrich, Walton, and
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Rushworth, 2007; Nassar, Rumsey, Wilson, Parikh, Heasly, and Gold, 2012). Theory is already

being developed along this dimension, but future experimental evidence of the adaptation process

will be critical in guiding the development of such theory (Robson and Whitehead, 2018; M lynarski

and Hermundstad, 2019; Aridor et al., 2020).

Another important direction for future research is to test the implications of efficient coding

outside the laboratory. A challenge here is to measure the prior distribution to which the DM has

adapted. A more refined theory of adaptation will be integral for guiding empirical work in the

field, as it will help shed light on the timescale which is relevant for forming prior expectations,

and hence perceptions. It is also likely that institutional factors will shape the relevant timescale

for adaptation. For instance, in financial markets, the distribution of a stock’s price over the past

52 weeks is typically salient to investors, and therefore may be a good candidate for the investor’s

prior distribution. We ourselves expect that future progress on the topic of efficient coding will

benefit from the close interplay between theory, experimental tests, and empirical validations in

the field.
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Figure 1. Prior distributions, coding rules and the optimal likelihood functions

Panel A plots two uniform stimulus distributions of X, one with high volatility (Xl = 8 and
Xu = 32) and the other with low volatility (Xl = 16 and Xu = 24). Panel B plots the coding
rule θ(X), defined in equation (4) of the main text, for both volatility conditions. Panel C plots
the implied likelihood function f(Rx|X), defined in equation (9) of the main text, for two values,
X = 18 and X = 22, and for each of the two stimulus distributions. The capacity constraint
parameter n is set to 10.

10 15 20 25 30

0.05

0.1

0.15

0.2

10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

47



Figure 2. Value functions and the underlying stimulus distributions

Panel A: the upper graph plots two uniform stimulus distributions for X, one with high volatility
(Xl = 8 and Xu = 32) and the other with low volatility (Xl = 16 and Xu = 24). The lower graph
plots the subjective valuations implied by efficient coding, v(X), and their one-standard-deviation
bounds v(X)±σ(X). Panel B: the upper graph plots two stimulus distributions, one monotonically
increasing and one monotonically decreasing. These distributions are characterized by

f(X;Xl, Xu,∆) =
1

Xu −Xl
−∆ + 2∆ · X −Xl

Xu −Xl
,

where Xl = 8 and Xu = 32. For the increasing distribution, ∆ is set to 1/30; and for the decreasing
distribution, ∆ is set to −1/30. The lower graph plots the subjective valuations implied by efficient
coding, v(X), and their one-standard-deviation bounds v(X) ± σ(X). The capacity constraint
parameter n for both panels is set to 10. In the lower graph of each panel, the green dash-dot line
is the forty-five degree line.
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Figure 3. Model predicted probability of choosing the risky lottery

Panel A: the graph plots, for each of the two volatility levels (low volatility: Xl = 16, Xu = 24,
Cl = 8, and Cu = 12; high volatility: Xl = 8, Xu = 32, Cl = 4, and Cu = 16), the probability of
choosing the risky lottery (equation (14) of the main text). The stimulus distributions for X and
C are uniform. The probability p for the risky lottery to pay X dollars is set to 0.5. The capacity
constraint parameter n is set to 10. For each volatility condition, we draw X and C from their
respective uniform distributions, and then compute the probability of risk taking for each level of
pX −C. Panel B: for each of the two volatility conditions described above, the left graph plots the
probability of choosing the risky lottery against each given level of X, integrated over values of C;
and the right graph plots the probability of choosing the risky lottery against each given level of
C, integrated over values of X.
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Figure 4. Experimental design for the risky choice task in Experiment 1

The task consists of two blocks of trials: one block contains trials from the high volatility condition
while the other block contains trials from the low volatility condition. The order of the blocks is
randomized across subjects. Each block begins with 30 “adapt trials,” followed by 270 “test trials.”
Among the 270 test trials, we designate 30 “common trials” that are identical across both volatility
conditions and are the basis of our main tests. On each trial, the subject has unlimited time to
decide which of the two options she prefers.
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Figure 5. Average probability of risk taking across volatility conditions

Panel A: the probability of choosing the risky lottery against the difference in expected values
between the risky lottery and the certain option, pX −C. Panel B: the probability of choosing the
risky lottery against values of X (left) and values of C (right). The probability of choosing the risky
lottery is computed as the proportion of trials on which subjects choose the risky lottery. Data are
pooled across subjects over all test trials in the first condition, and thus represent between subjects
comparisons. For each volatility condition, we bin the running variables—pX −C in Panel A, and
X or C in Panel B—to their nearest integer values, and plot the mean for each bin. The length of
the vertical bar inside each data point denotes two standard errors of the mean. Standard errors
are clustered by subject.
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Figure 6. Experimental design for the perceptual choice task in Experiment 1

The task consists of two blocks of trials: one block contains trials from the high volatility condition
while the other block contains trials from the low volatility condition. The order of the blocks is
randomized across subjects. Each block begins with 60 “adapt trials,” followed by 340 “test trials.”
Among the 340 test trials, we designate 90 “common trials” that are identical across both volatility
conditions and are the basis of our main tests. On each trial, the subject is incentivized to classify
whether the number shown on the screen is greater than or less than a reference level of 65.
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Figure 7. Classification performance and response time for the perceptual choice task

Panel A: the x-axis denotes the integer X that is presented on each trial. The y-axis denotes the
proportion of trials for which subjects classified X as greater than 65. Panel B: the y-axis denotes
the average response time for the subject to execute a decision, for those trials on which the subject
responded correctly. Data are pooled across subjects over all test trials in the first condition, and
thus represent between subjects comparisons. The length of the vertical bar inside each data point
denotes two standard errors of the mean. Standard errors are clustered by subject.
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Figure 8. Out-of-sample model fits for the risky choice task in Experiment 1

The x-axis in each of the four panels is the model predicted probability of choosing the risky
lottery. In all four panels, we plot data only from odd-numbered trials. In the upper two panels,
we compute the predicted probabilities using parameters estimated from even-numbered trials, and
data are either from the high volatility condition (left) or from the low volatility condition (right).
The lower left panel pools data from both the high and low volatility condition. The lower right
panel reports results from a counterfactual analysis where choice data are identical to those in the
upper right panel, except the model predicted probability is generated under the counterfactual
assumption that the prior is the high volatility distribution.
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Figure 9. Efficient coding of probability

The upper graph plots the following distribution of probability

f(p;λ1, λ2, w) = K−1[w · e−λ1p + (1− w) · e−λ2(1−p)],

where K, a normalization factor, is (w/λ1)(1−e−λ1)+((1−w)/λ2)(1−e−λ2). The lower graph plots
the implied probability weighting function, v(p), and its one-standard-deviation bounds v(p)± (p).
The parameter values are: λ1 = 7.5, λ2 = 8.5, w = 0.25, and n = 10. The green dash-dot line is
the forty-five degree line.
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Table 1. Payoff values on the 30 common test trials (Experiment 1)

The table presents the payoff values that comprise the 30 common test trials in the risky choice task
of Experiment 1. The set of 30 common test trials is presented to subjects once in each volatility
condition. The order of the test trials is randomized across subjects.

X C X C

$17.30 $11.20 $21.29 $8.82

$17.31 $9.62 $21.30 $10.39

$17.32 $8.04 $21.34 $11.23

$17.34 $8.75 $21.34 $9.58

$17.38 $10.38 $21.38 $8.00

$18.63 $8.79 $22.62 $9.62

$18.64 $11.16 $22.66 $8.79

$18.68 $9.61 $22.67 $8.04

$18.68 $8.03 $22.69 $11.21

$18.72 $10.44 $22.71 $10.42

$19.96 $9.62 $23.96 $9.55

$19.98 $8.01 $23.97 $11.80

$19.99 $8.81 $23.98 $10.37

$20.03 $10.40 $23.98 $8.03

$20.04 $11.22 $23.99 $8.84
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Table 2. Probability of choosing the risky lottery in Experiment 1 (volatility manipulation)

The table reports results from mixed effects linear regressions where the dependent variable takes the value of one if the subject chooses
the risky lottery, and zero otherwise. The dummy variable, high, takes the value of one if the trial belongs to the high volatility condition,
and zero if it belongs to the low volatility condition. Only data from test trials are included. There are random effects on the independent
variables X, C, and the intercept. Standard errors of the fixed effect estimates are reported in parentheses. ***, **, * denote statistical
significance at the 1%, 5%, and 10% levels, respectively.

Between subjects tests Within subjects tests

(1) (2) (3) (4) (5) (6)

Dependent variable:
“Choose risky lottery”

All data Common trials
only

Common trials
only

Common trials only

(w/out trials 301-450)

Common trials
only—low vol first

(w/out trials 301-450)

Common trials
only—high vol first

(w/out trials 301-450)

high –0.156 0.001 –0.023 –0.061 0.016 –0.164

(0.114) (0.135) (0.092) (0.108) (0.168) (0.155)

X 0.074*** 0.074*** 0.062*** 0.064*** 0.073*** 0.053***

(0.004) (0.004) (0.004) (0.004) (0.004) (0.006)

C –0.173*** –0.186*** –0.164*** –0.170*** –0.186*** –0.155***

(0.007) (0.007) (0.008) (0.007) (0.008) (0.011)

X×high –0.044*** –0.023*** –0.006* –0.009** –0.015** –0.002

(0.005) (0.005) (0.003) (0.004) (0.006) (0.006)

C×high 0.110*** 0.049*** 0.013** 0.025*** 0.030** 0.019*

(0.010) (0.010) (0.007) (0.008) (0.012) (0.011)

Constant 0.668*** 0.787*** 0.827*** 0.850*** 0.801*** 0.943***

(0.084) (0.100) (0.081) (0.086) (0.104) (0.127)

Observations 37,612 4,170 8,257 6,411 3,125 3,286
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Table 3. Probability of classifiying X as greater than 65 in perceptual choice task

The table reports results from mixed effects logistic regressions where the dependent variable takes the value of one if the subject classifies
the integer X as larger than 65, and it takes the value of zero otherwise. The integer X is drawn uniformly from the set [31, 99]\{65} in
the high volatility condition, while X is drawn uniformly from the set [56, 74]\{65} in the low volatility condition. The dummy variable,
high, takes the value of one if the trial belongs to the high volatility condition, and zero if it belongs to the low volatility conditions. There
are random effects on the variable X − 65 and the intercept. Standard errors of the fixed effect estimates are reported in parentheses.
***, **, * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Between subjects tests Within subjects tests

(1) (2) (3) (4) (5) (6)

Dependent variable:
“Classify X as greater

than 65”

56 ≤ X ≤ 74 60 ≤ X ≤ 69 56 ≤ X ≤ 59
or

70 ≤ X ≤ 74

56 ≤ X ≤ 74 60 ≤ X ≤ 69 56 ≤ X ≤ 59
or

70 ≤ X ≤ 74

X − 65 0.855*** 1.096*** 0.578*** 0.792*** 1.051*** 0.558***

(0.037) (0.050) (0.018) (0.024) (0.033) (0.012)

(X − 65)×high –0.209*** –0.279*** –0.081*** –0.147*** –0.237*** –0.077***

(0.051) (0.070) (0.026) (0.010) (0.018) (0.011)

high 0.288*** 0.405*** –0.041 0.259** 0.300** 0.146**

(0.054) (0.068) (0.112) (0.035) (0.043) (0.072)

Constant 0.065** 0.071* 0.269*** 0.036** 0.077*** 0.119***

(0.029) (0.037) (0.063) (0.020) (0.024) (0.046)

Observations 31,230 15,522 15,708 63,210 31,580 31,630
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Table 4. Payoff values on the 10 common test trials (Experiment 2)

The table presents the payoff values that comprise the 10 common test trials in Experiment 2. The
set of 10 common test trials is presented to subjects once in each condition. The order of the test
trials is randomized across subjects.

X C

$9.04 $6.09

$10.09 $6.09

$11.05 $6.09

$12.02 $6.09

$13.08 $6.09

$14.01 $6.09

$15.04 $6.09

$16.07 $6.09

$17.04 $6.09

$18.06 $6.09
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Table 5. Probability of choosing the risky lottery in Experiment 2 (shape manipula-
tion)

The table reports results from mixed effects linear regressions where the dependent variable takes
the value of one if the subject chooses the risky lottery, and zero otherwise. The dummy variable,
increasing prior, takes the value of one if the trial belongs to the increasing prior condition, and
zero if it belongs to the decreasing prior condition. The variable C is constant among common
trials, and thus we do not include it as a control in Columns (2) and (3). Only data from test trials
are included. There are random effects on the variables X, C, and the intercept. Standard errors
of the fixed effect estimates are reported in parentheses. ***, **, * denote statistical significance
at the 1%, 5%, and 10% levels, respectively.

(1) (2) (3)

Dependent variable:
“Choose risky lottery”

All data Common trials
only

Common trials only
and X < 15.79

increasing prior 0.025*** 0.054** 0.068**

(0.005) (0.024) (0.029)

X 0.022*** 0.060*** 0.073***

(0.001) (0.006) (0.008)

C –0.063***

(0.002)

Constant 0.594*** –0.400*** –0.545***

(0.322) (0.080) (0.096)

Observations 22,835 764 538
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Appendices

A. Theoretical Derivations

HWP have derived coding rules under three different performance objectives: one that maxi-

mizes mutual information, one that maximizes accuracy, and one that maximizes expected financial

gain. In this section, we closely follow HWP and prove that, when the conditions in equation (8)

of the main text

(i) draws of X and C are independent

and (ii) pX and C are identically and uniformly distributed
(A.1)

are satisfied, the three coding rules are equivalent. First, if the performance objective is to maximize

mutual information between a payoff and its noisy signal, then the coding rules θ(X) and θ(C) in

equations (4) and (5) of the main text come directly from HWP.

Next, if the performance objective is to maximize accuracy—in the sense of choosing the option

with the highest objective expected value—then, under the conditions in (A.1), we make two

conjectures

(i) E[pX̃|Rx], viewed as a function of Rx, and E[C̃|Rc], viewed as a function of Rc,

are identical functions,

and (ii) the optimal coding rules are related: θ(X) = θ(C = pX), ∀X ∈ [Xl, Xh].

(A.2)

We observe that maximizing accuracy is equivalent to minimizing the probability of error

Proberror ≡
∫ Ch

Cl

dC

∫ Xh

Xl

f(X,C)Prob (error|θ(X), θ(C)) dX, (A.3)

where Prob(error|θ(X), θ(C)) represents the probability that the DM chooses the option with the

lower expected payoff observed by the econometrician. Given the two conjectures from (A.2), this

probability error equals the probability that Rx − Rc and θ(X) − θ(C) are of the opposite sign.

Combining (A.3) with the two conjectures, we observe that when n is large,

Prob(error|θ(X), θ(C))

= Prob(error|θ(Y ), θ(C)) ≈ Φ

− |θ(Y )− θ(C)|√
θ(Y )(1−θ(Y )+θ(C)(1−θ(C)))

n

 ,
(A.4)

where Y ≡ pX, so Y and C are independently and identically distributed. Moreover, (A.3) can be
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written as

Prob(error|θ(X), θ(C)) =

∫ Ch

Cl

dC

∫ Xh

Xl

f(X)f(C)Prob (error|θ(X), θ(C)) dX

=

∫ Ch

Cl

dC

∫ Ch

Cl

f(Y )f(C)Prob (error|θ(Y ), θ(C)) dY.

(A.5)

Given (A.5), the derivation of the optimal coding rules θ(X) and θ(C) follow directly from the

Appendix of HWP; these coding rules are identical to those when the performance objective is to

maximize mutual information. Given the coding rules, verifying the two conjectures from (A.2) is

straightforward.

Finally, if the performance objective is to maximize expected financial gain, then with the two

conjectures from (A.2), derivations from HWP imply the following coding rules

θ(X) =

(
sin

[
π

2

∫ X
Xl
f(x)2/3dx∫ Xh

Xl
f(x)2/3dx

])2

, θ(C) =

(
sin

[
π

2

∫ C
Cl
f(c)2/3dc∫ Ch

Cl
f(c)2/3dc

])2

. (A.6)

Verifying the two conjectures is again straightforward. Moreover, when X and C are uniformly

distributed, the coding rules in (A.6) reduce to equations (4) and (5) of the main text. That

is, maximizing expected financial gain and maximizing mutual information give rise to the same

coding rules. �
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B. Experimental Instructions and Pre-Registration Documents

1. Instructions for the risky choice task in Experiment 1
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2. Instructions for the perceptual choice task in Experiment 1
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3. Instructions for the risky choice task in Experiment 2
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4. Pre-registration documents for Experiment 1

68



69



5. Pre-registration documents for Experiment 2
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C. Response Times in the Volatility Experiment

Here we present data on response times from the risky choice task of Experiment 1, our volatility

manipulation experiment. As indicated in the main text, we find that on common trials, response

times are significantly shorter in the low volatility condition, compared to the high volatility con-

dition. Panel A of Figure C1 shows that response times in both conditions become longer as the

absolute difference in expected values, |pX–C|, approaches zero. This result is consistent with a

large literature on sequential sampling models in which response times become longer as the ab-

solute difference between values of two alternatives gets smaller (Krajbich et al., 2010; Clithero,

2018).

[Place Figure C1 about here]

More importantly, for our tests of efficient coding, we find that response times are shorter across

the distribution of pX–C in the low volatility condition, compared to the high volatility condition.

This suggests that the “sensitivity” effects we observe from the choice data—Panel B of Figure C1

reproduces Panel A of Figure 5—represent a conservative estimate of efficient coding. In other

words, if we adjust for information processing time, which is a fraction of the total response time,

then the difference in choice sensitivity across conditions would likely be larger.

Not only are response times helpful for interpreting the choice data, but they can be used to

understand how subjects adapt to a new payoff distribution. Specifically, we examine the time

series evolution of response times over the course of the risky choice task. Recall that in the risky

choice task, there are 300 trials in the first condition and 300 trials in the second condition. The

order of the conditions is randomized across subjects. Figure C2 shows the response time data,

disaggregated by which condition a subject experienced first. The upper panel plots, for each of

the 600 trials, the response time averaged across subjects who first went through the low volatility

condition, followed by the high volatility condition. We see a spike in response time at trial 301,

which is the beginning of the high volatility condition. As we mentioned in the main text when

presenting the results from Table 2, the spike in response time may be due to the fact that subjects

begin to experience novel and hence salient payoffs that they had not seen in the first 300 trials.

As a result, these payoffs signal a change in environment and cause subjects to take longer to make

decisions in the new environment.

[Place Figure C2 about here]

In contrast, the lower panel plots the response time averaged across subjects who first experience

the high volatility condition and then go through the low volatility condition. In this cut of the

data, we find no corresponding spike in response time at the beginning of the second condition.

Here, subjects do not observe salient “outlier” payoffs: every payoff in the (low volatility) second

condition is in the support of the payoff distribution from the recently experienced (high volatility)

first condition. We speculate that this extra difficulty in adapting to the low volatility distribution
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may be partly responsible for our within subject results in Table 2: the coefficients on the interaction

terms, X×high and C×high, have smaller magnitudes in Column (6) of Table 2, compared to those

in Column (5).
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Figure C1. Response times and choice data for the risky choice task

Panel A: the x-axis denotes the difference in expected values between the risky lottery and the
certain option, pX − C. The y-axis denotes the average response time (in seconds). Data are
pooled across subjects over all test trials in the first condition; the initial 30 adapt trials are
excluded. Panel B: the probability of choosing the risky lottery against pX − C. This panel is
identical to Panel A of Figure 5.
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Figure C2. Average response time across the 600 trials from the risky choice task

Each blue dot represents a trial-specific response time averaged across subjects. The upper panel
presents data from subjects who experienced the low volatility condition first. The lower panel
presents data from subjects who experienced the high volatility condition first. The red vertical
line denotes the onset of the change in environment.
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D. Predictions of Alternative Models

1. Expectations-based reference points: Kőszegi and Rabin (2006, 2007)

We consider predictions of expectations-based reference points as proposed by Kőszegi and

Rabin (2006, 2007) (KR). In this model, the DM evaluates a lottery by comparing each of its

individual outcomes to a (possibly stochastic) reference payoff. Specifically, suppose the DM

expects the reference point distribution to be G(r), and suppose the lottery F the DM evaluates

has N potential outcomes, x1, x2, . . . , xN ; outcome xn is associated with probability pn. Then, the

utility of payoff xn relative to the stochastic reference point G can be written as

v(xn|G) =

∫
(xn + µ(xn − r))dG(r), (D.1)

where

µ(y) =

η · y if y ≥ 0

(ηλ) · y if y < 0
, (D.2)

η measures the relative importance of the gain-loss utility, and λ measures the degree of loss

aversion.

KR propose that expectations are given by the DM ’s rational expectations. As a first pass,

one can assume that whenever the DM considers a lottery F , she views the lottery itself as the

reference point, and thus the overall utility of F is V (F |F ) =
∑N

n=1 pnv(xn|F ). KR denote such

a reference point specification as the “choice acclimating personal equilibrium.” Under this spec-

ification, the valuation of a lottery—and hence risk taking behavior—depends only on the payoff

distribution of that particular lottery, which is held constant across different experimental condi-

tions (in both Experiment 1 and Experiment 2). Thus, this specification of KR cannot explain our

main experimental results.

Below we further consider two alternative versions of the reference point distribution under KR:

1. The reference point for the risky lottery is a mixed prior distribution of X and zero: with

50% probability, the reference point is drawn from the prior distribution of X, and with the

remaining 50% probability, it takes the value of zero. The reference point for the certain

option is drawn from the uniform distribution [Cl, Ch].

2. The reference point for X is drawn from the prior distribution of X. The reference point for

zero takes the value of zero. The reference point for the certain option is drawn uniformly

from [Cl, Ch].

[Place Table D1 about here]

Here we focus on testing whether KR can make sense of the main result from Experiment 2—

that demand for the risky lottery is higher in the increasing condition, compared to the decreasing
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condition.38 Table D1 computes, for each of the 10 common trials from Experiment 2 and for

each of the two experimental conditions, the difference between the KR value of the risky lottery

and the KR value of the certain option. If this difference is positive, the DM chooses the risky

lottery; conversely, if this difference is negative, the DM chooses the certain option. For these

computations, we set η = 1 and λ = 2.

Table D1 shows that, under both versions of the reference point distribution, the relative valua-

tion of the risky lottery is lower in the increasing condition, which is the opposite of our main result

from Experiment 2. In the increasing condition, the reference point is more likely to be above the

payoff value of X. Thus, loss aversion tends to lower the overall utility of the risky lottery.

2. Range normalization models and decision-by-sampling models

We now examine range normalization models and the decision-by-sampling (DbS) model, with

an emphasis on how their predictions relate to our experiments. First, we analyze the range

normalization model of Rustichini et al. (2017). This model gives rise to the following probability

of risk taking

Prob(risk taking|X,C) = Φ

 KXtX(X −Xl)−KCtC(C − Cl)√
χ(K2

XtX(X −Xl) +K2
CtC(C − Cl))

 , (D.3)

where tX = v/(Xu −Xl) and tC = v/(Cu − Cl). Here v and χ are parameters of coding capacity.

Also, when p(Xu −Xl) = Cu − Cl, KX = KC . Equation (D.3) can be further simplified as

Prob(risk taking|X,C) = Φ

(√
v̄

χ
· (X −Xl)/(Xu −Xl)− (C − Cl)/(Cu − Cl)√

(X −Xl)/(Xu −Xl) + (C − Cl)/(Cu − Cl)

)
. (D.4)

Panel A of Figure D1 plots, for the two volatility conditions specified in Section III.1.1, the proba-

bility of choosing the risky lottery from equation (D.4). This result shows that models of efficient

coding and models of range normalization both give rise to the main prediction from Experiment

1—that sensitivity to payoff values increases when the dispersion of potential values decreases.

[Place Figure D1 about here]

At the same time, equation (D.4) shows that, holding the ranges—Xu −Xl and Cu − Cl—and

X and C constant, the probability of risk taking in models of range normalization does not vary

with the shape of the payoff distribution. Therefore, these models cannot explain the results from

Experiment 2—that demand for the risky lottery is higher in the increasing condition compared to

the decreasing condition.

Lastly, we turn to the decision-by-sampling model. As discussed in HWP, DbS implies the

38The main result from Experiment 1 relates to stochastic choice, which is outside the deterministic model of KR.
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following coding rules under the resource constraints in HWP:

θ(X) = F (X), θ(C) = F (C). (D.5)

Panel B of Figure D1 shows that DbS also predicts that a given increase in X or C leads to a larger

change in risk taking when payoffs are drawn from the low volatility distribution, compared to the

high volatility distribution (as in our Experiment 1). Moreover, DbS implies higher demand for the

risky lottery when risky payoffs are drawn from an increasing distribution, compared to a decreasing

distribution (as in our Experiment 2). Thus, efficient coding and DbS generate qualitatively similar

predictions. Indeed, Bhui and Gershman (2018) show that efficient coding can serve as a normative

foundation for DbS.
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Figure D1. Probability of choosing the risky lottery under alternative models

Panel A: the graph plots, for each of the two volatility levels (low volatility: Xl = 16, Xu = 24,
Cl = 8, and Cu = 12; high volatility: Xl = 8, Xu = 32, Cl = 4, and Cu = 16), the probability of
choosing the risky lottery implied by the range normalization model of Rustichini et al. (2017). The
stimulus distributions for X and C are uniform. The probability p for the risky lottery to pay X
dollars is set to 0.5. The ratio v/χ is set to 15, as in Rustichini et al. (2017), which is a measure of
coding capacity. Panel B: the graph plots, for each of the two volatility levels described above, the
probability of choosing the risky lottery implied by decision-by-sampling (Stewart et al., 2006; Bhui
and Gershman, 2018). The capacity constraint parameter n is set to 10. For each volatility
condition, we draw X and C from their respective uniform distributions, and then compute the
probability of risk taking for each level of pX − C.
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Table D1. Predictions of Kőszegi and Rabin (2006, 2007)

The table computes, for each of the 10 common trials from Experiment 2 and for each of the two
experimental conditions, the difference between the KR value of the risky lottery and the KR value
of the certain option. Version 1 and version 2 correspond to two different specifications of the
reference point distribution, as discussed in Appendix D.1. Parameter values are: η = 1 and λ = 2.

Version 1 Version 2

Trial X C Increasing Decreasing Increasing Decreasing

1 9.04 6.09 –9.65 –3.26 –7.39 –1.01

2 10.09 6.09 –8.34 –1.97 –5.82 0.51

3 11.05 6.09 –7.15 –0.82 –4.40 1.86

4 12.02 6.09 –5.95 0.33 –2.97 3.19

5 13.08 6.09 –4.64 1.58 –1.41 4.62

6 14.01 6.09 –3.50 2.65 –0.06 5.84

7 15.04 6.09 –2.24 3.83 1.43 7.16

8 16.07 6.09 –0.99 4.99 2.90 8.46

9 17.04 6.09 0.18 6.07 4.27 9.65

10 18.06 6.09 1.40 7.20 5.70 10.88
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Table E1. Probability of choosing the risky lottery in Experiment 1 using logistic regressions

The table reports results from logistic regressions where the dependent variable takes the value of one if the subject chooses the risky
lottery, and zero otherwise. Data are pooled across all subjects and standard errors are clustered at the subject level. The dummy
variable, high, takes the value of one if the trial belongs to the high volatility condition, and zero if it belongs to the low volatility
condition. Only data from test trials are included. Standard errors are reported in parentheses. ***, **, * denote statistical significance
at the 1%, 5%, and 10% levels, respectively.

Between subjects tests Within subjects tests

(1) (2) (3) (4) (5) (6)

Dependent variable:
“Choose risky lottery”

All data Common trials
only

Common trials
only

Common trials only

(w/out trials 301-450)

Common trials
only—low vol first

(w/out trials 301-450)

Common trials
only—high vol first

(w/out trials 301-450)

high –0.464 –0.051 –0.013 –0.088 0.507 –0.628

(0.694) (0.934) (0.440) (0.541) (0.777) (0.660)

X 0.456*** 0.407*** 0.331*** 0.353*** 0.407*** 0.270***

(0.038) (0.041) (0.027) (0.030) (0.041) (0.040)

C –1.003*** –0.988*** –0.830*** –0.894*** –0.988*** –0.749***

(0.082) (0.094) (0.061) (0.067) (0.094) (0.089)

X×high –0.255*** –0.171*** –0.058*** –0.111*** –0.150*** –0.034

(0.042) (0.051) (0.020) (0.027) (0.033) (0.036)

C×high 0.568*** 0.368*** 0.117** 0.239*** 0.263*** 0.129*

(0.090) (0.114) (0.048) (0.057) (0.071) (0.077)

Constant 0.487 1.283 1.365*** 1.512*** 1.283 1.860***

(0.673) (0.848) (0.486) (0.584) (0.851) (0.639)

Observations 37,612 4,170 8,257 6,411 3,125 3,286
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