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Abstract

Missing data for return predictors is a common problem in cross sectional asset pric-
ing studies. Most papers do not explicitly discuss how they treat missing data but
conventional treatments focus on complete cases for all predictors or impute the un-
conditional mean for the missing predictor. Both methods have undesirable properties
- they are either inefficient or lead to biased estimators and incorrect inference. We
propose a simple and computationally attractive alternative approach using conditional
mean imputations and weighted least squares. This method allows us to use all sample
points with observed returns, it results in valid inference, and it can be applied in non-
linear and high-dimensional settings. We map our estimator into a GMM framework
to study its relative efficiency and find that it performs almost as well as the efficient
but computationally costly GMM estimator in many cases. We apply our procedure
to a large panel of return predictors and find that it leads to improved out-of-sample
predictability.
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1 Introduction

Missing data is a common problem in cross-sectional asset pricing studies. While the

problem of missing return observations has received some attention and is typically treated by

utilizing the so-called delisting returns (Shumway (1997), Beaver et al. (2007)), the problem

of missing covariates is typically only addressed implicitly. A large and growing number of

papers utilize these covariates, such as firm characteristics, to predict future returns cross-

sectionally or use such information for building factor portfolios to explain the cross section of

returns. In these studies, by far the most common procedure to deal with missing covariates

is to exclude an observation altogether if any covariate is missing and conduct the subsequent

analysis only on the cases for which no covariates or outcomes are missing (complete cases

analysis). This approach typically neglects a substantial subset of the data. For example,

in this paper, we use the data set of Chen and Zimmermann (2021) containing more than

3 million return observations and 40 covariates. For around 2 million of these observations

between 1 and 5 covariates are missing. These observations would then all be excluded from

the analysis, even though they contain useful information. This is in contrast to what Zhang

et al. (2005) call “one of statistics’ first principles” – “thou shall not throw data away”.

Moreover, the complete case approach has an additional drawback that may be overlooked

at first sight. By conditioning on firms, for which all covariates are available, we might

inadvertently ignore an interesting part of the return distribution and thus preclude us from

forming better portfolios.

To harness the additional power from studying all firms with valid return observations,

we propose a simple approach to impute the missing observations in the covariates. At an

intuitive level, our approach works by replacing the missing covariates with suitable esti-

mates and accounting for the estimation error in subsequent inference. In addition, we also

“down-weigh” the observations for which data was imputed, thereby adjusting for the fact

that these are not truly observed data points. In general, the more covariates are imputed,

the less weight an observation receives. Our approach therefore allows us to use all firms

with valid return observations, while enabling feasible and correct inference. We can obtain
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suitable replacements of the missing values from the (observed) cross-section or from the

time-series of past observations. The method can be used if the main model of interest is

parametric or nonparametric and does not require us to specify the entire distribution of

the missing covariates. We show that it can be cast into a generalized method of moments

(Hansen (1982)) setting, which allows us to easily study its statistical properties. This en-

ables us to account for the imputation step in conducting inference and also understand

the efficiency gains of the proposed approach. Contrary to many Bayesian and likelihood-

based approaches that address missing data issues, such as multiple imputation or the EM

algorithm, our method is computationally inexpensive and places fewer assumptions on the

data generating process. However, we do need to impose certain assumptions on why obser-

vations are missing. Specifically, similar to the complete case and many other approaches,

we cannot allow the probability that a particular observation is missing to depend on the

outcome variable, once we condition on observed covariates. We characterize the conditions

under which we obtain consistent estimates and correct inference, and we argue that these

conditions are plausible in many empirical asset pricing studies.

In recent years, many asset pricing papers aim to respond to Cochrane (2011)’s multidi-

mensional challenge. In such a setting the number of possible predictors naturally grows and

the missing data problem is aggravated. In an attempt not to throw away too many obser-

vations, some researchers replace missing values of the covariates with their cross-sectional

mean (mean imputation) of that period. We wholeheartedly agree with the aim to use as

many return observations as possible. However, we also show that mean imputation is rarely

desirable. Mean imputation (typically) leads to incosistent estimates and incorrected stan-

dard errors. Intuitively, mean imputation leads to an underestimation of (co)variance and

hence over-rejection of null hypotheses, i.e. in the context of cross-sectional asset pricing,

we would find too many successful cross-sectional predictors.

We illustrate the finite sample properties of our approach in an extensive simulation study

and find that it performs well in realistic sample sizes. The simulations also help illustrate

when the ad-hoc approaches, such as mean imputation and complete case analysis are (and
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are not) problematic.

We also apply our method to the CRSP/Compustat sample. We find that it is indeed

desirable to use all return observations because conditioning on complete cases ignores an

interesting part of the return distribution. Portfolios sorted on the return prediction achieve

higher out-of-sample returns when using the full sample, where the missing predictors are

imputed using our method. We also document that mean imputation can lead to some

incorrect inferences. In addition, we carry out a model selection analysis over the full sample

to determine the most important predictors. The complete cases analysis discards many

predictors and even well established predictors such as size or value are found to be irrelevant.

We illustrate that our simple approach can be widely applied as it allows the use of all valid

return observations, while providing correct standard errors for inference at the same time.

1.1 Related Literature

The problem of missing data is ubiquitous in empirical analyses. For example, clinical

trials routinely have to confront the problem that some patients do not show up for follow-up

examinations. A related problem occurs in surveys, where respondents often leave questions

blank, sometimes by accident and at other times because they feel uncomfortable answer-

ing. Regardless of the reason, the result is missing data. Either explicitly or implicitly,

researchers have to make assumptions about how to proceed with the empirical analysis in

such situations. The problem of missing data and issues like the ones listed here have long

been recognized in the applied and methodological literature. Consequently, researchers have

proposed many different procedures to deal with missing data in a variety of settings.

The general literature on missing data is too vast to be summarized here and we refer

to Molenberghs et al. (2015) and Little and Rubin (2020) for textbook introductions to

the most common approaches to deal with missing data in different situations. We will

therefore only review the most common approaches that are closely related to ours and

place special emphasis on the treatment of missing data in asset pricing. In general, there is

no single procedure that can be successfully applied to all missing data problems. Dealing
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with missing data successfully requires taking a stance on why the data is missing – the

so called missing mechanism.1 If the probability that a particular observation is missing

depends on the outcome variable (even after conditioning on observables), this is typically

labeled as not missing at random. In this case, the missing mechanism has to be modeled

explicitly, for example through a selection model, such as the Heckman selection estimator

(Heckman (1979)). Since we do not pursue such an approach, we will not elaborate on this

literature further.2

In situations where the probability of observing a sample point does not depend on the

outcome variable itself, but may depend on observed covariates, the literature has proposed

several general approaches to deal with missing data. Some of these approaches rely on

strong distributional assumptions on unobservables (i.e. likelihood approaches and Bayesian

methods) that we do not want to impose. Instead, we use a method based on moment

restrictions and imputation, i.e. replacing the missing variables with suitable estimates. Im-

putation has a long history and is studied, among others, in Yates (1933), Dagenais (1973),

Rubin (1978), Nijman and Palm (1988a), Little (1992), and Rao and Toutenburg (1999).

Just like we do, some of these approaches also down-weigh observations with missing values,

but these studies typically only allow for one missing pattern, which means that either all

variables are observed or one particular subset of the variables is missing. We extend these

ideas (specifically the weighting approach of Dagenais (1973)) and allow for general missing

patterns. One challenge that arises with imputation methods is how to account for the “im-

putation uncertainty” in inference, because the imputations are estimates themselves. This

idea goes back to Gourieroux and Monfort (1981) who also just have one missing pattern.

One way to approach this issue is to cast the imputation model and main model in a gen-

eralized method of moments (GMM) setting (Hansen (1982)) and thereby obtain standard

errors that are corrected for the uncertainty from the imputation step. Following this route,

Abrevaya and Donald (2017) study the efficient estimator with one missing pattern. One

1We review the most commonly used missing mechanism in Section A.1.
2In finance, studies of fund performance are examples in which such a situation arises as noted by Brown

et al. (1992).
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drawback of the optimal GMM estimator is that it can be computationally very costly as it

amounts to solving a nonlinear optimization problem. In our application with general miss-

ing patterns and many covariates, the efficient GMM estimator is computationally infeasible.

These problems are also well-documented in macro finance applications, e.g. Hansen et al.

(1996). We show that our estimator can be interpreted as a GMM estimator with a spe-

cific weight matrix.3 This estimator is available in closed form, computationally much less

costly than the efficient estimator, and simulation show that the loss in efficiency is small.

Importantly, we can use standard GMM results to compute standard errors.

Another estimation approach that relies on moment restrictions is inverse probability

weighting (IPW), i.e. re-weighting the complete case sample such that it more closely mir-

rors the population (Robins et al. (1994), Wooldridge (2007)), in which case we typically

need to model the probability that a particular case is observed. The IPW approach re-

laxes important assumptions relative to the (unweighted) complete case, but does not use

all available data. A considerable generalization is the class of augmented IPW (AIPW)

estimators, which uses the whole sample. Under certain assumptions, which differ slightly

from our setup, Robins et al. (1994) show that the AIPW estimator is semiparameteric ef-

ficient. However, similar to the optimal GMM estimator, the efficient AIPW estimator is

generally not available in closed form and computationally prohibitive in our application.

For comprehensive results on AIPW estimators see for example Tsiatis and Davidian (2015).

To our knowledge, no paper deals explicitly with the problem of missing predictors in

multivariate (cross sectional) asset pricing studies and studies the consequences of different

assumptions. Nonetheless, the problem of missing data has been recognized by empirical

asset pricing researchers. In early an contribution, Haugen and Baker (1996) worry if a

potential bias may arise from using only the fully observed cases. While most papers do

not explicitly state this, using only cases for which all covariates (and the outcome) are

observed, appears to be the most commonly employed approach to deal with missing data

3Zhou (1994) uses an alternative weight matrix to derive analytical GMM tests in the context of linear
factor models. More recently, Liao and Liu (2020) also propose a two-step approach to test linear factor
models – notably, they obtain optimality results in this case.
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in asset pricing studies. Recent examples who use the complete case method are Lewellen

(2015), Freyberger et al. (2020), Kelly et al. (2019), Kim et al. (2021). Other papers, follow a

special imputation approach and replace the missing covariate values with the cross-sectional

mean or median, see e.g. Light et al. (2017), Kozak et al. (2020), Gu et al. (2020).

Connor and Korajczyk (1987), Xiong and Pelger (2019) and Blanchet et al. (2021) are

concerned with different missing data problems relative to us, but they deserve special men-

tion as part of the few papers in finance that recognize missing data as an issue to be dealt

with in empirical studies. Other recent papers that deal with missing data in factor models

include Bai and Ng (2021), Cahan et al. (2021), and Jin et al. (2021) . Lastly, Harvey et al.

(2016) recognize that unreported tests for the significance of a cross-sectional predictors can

be interpreted as a missing data problem. They estimate the number of unreported (and

thus missing) tests and then suitably adjust their proposed multiple testing thresholds.

2 Model

2.1 Simple example

We start by illustrating the main idea of our approach using a simple example with cross-

sectional data. In the next subsection, we introduce the general panel data model. Let Yi

be the return of firm i. Let Xi ∈ R2 be a vector of two characteristics. In this example, we

use the linear regression model

Yi = β0 +Xi,1β1 +Xi,2β2 + εi, E[εi | Xi] = 0

The parameters of interest are β0, β1, and β2.

Suppose that for a subset of the data Xi,2 is not observed, but Xi,1 and Yi are always

observed. Define Di = 0 if observation i is complete and let Di = 1 if Xi,2 is missing. We

allow data to be missing systematically, but we essentially assume that the data is missing

at random once we condition on the observed characteristics. This assumption consists of
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two parts. First, we assume that

E [εi | Xi,1, Xi,2, Di = 0] = 0

Since we also assume that E[εi | Xi] = 0, a sufficient condition for this assumption is that

εi is independent of Di conditional on Xi. Notice that this assumption is also implicitly

imposed when using the complete subset of observations only. Second, we assume that

E [Xi,2 | Xi,1, Di = 0] = E [Xi,2 | Xi,1, Di = 1] .

That is, the conditional mean of Xi,2 | Xi,1 is the same for the complete and the incomplete

subset of the observations. Hence, while Di may depend on Xi,1, it cannot depend on Xi,2.

In the full model, we allow Di to depend on all variables that are always observed. In

particular, in our sample we always observe 18 firm characteristics, including size, book-to-

market, beta, idiosyncratic risk, and the return of the previous month, and the probability

that an observation is incomplete can be a function these characteristics (see Section 4 for a

detailed description of the data and a full list of characteristics). For example, smaller firms

may be more likely to have missing values. However, conditional on all of these characteris-

tics, we essentially assume that the data is missing at random. While these assumptions are

not directly testable, as explained below, we can test the implications of the assumptions

that we use to construct our estimator.

The first part of the assumption implies that

E [Yi | Xi,1, Xi,2, Di = 0] = β0 +Xi,1β1 +Xi,2β2

which means that we could estimate the parameters using the subset of complete observations

only. This approach is inefficient because it neglects a part of the data that contains both
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Yi and Xi,1. For this part of the sample, the best predictor of Yi given Xi,1 is

E [Yi | Xi,1, Di = 1] = β0 +Xi,1β1 + E [Xi,2 | Xi,1, Di = 1] β2 + E [εi | Xi,1, Di = 1]

= β0 +Xi,1β1 + E [Xi,2 | Xi,1, Di = 0] β2

In the second line, we used that E [εi | Xi,1, Xi,2] = E [εi | Xi,1, Xi,2, Di = 0] = 0 implies

that E [εi | Xi,1, Di = 1] = 0 given that Di = 1 with positive probability. Notice that

E [Xi,2 | Xi,1, Di = 0] can be estimated using the complete subset of the sample. In this

example, we assume that

E [Xi,2 | Xi,1, Di = 0] = γ0 +Xi,1γ1

in which case

E [Yi | Xi,1, Di = 1] = β0 +Xi,1β1 + (γ0 +Xi,1γ1) β2

To summarize, we now have the three conditional moment restrictions

E [Yi − β0 −Xi,1β1 −Xi,1β2 | Xi,1, Xi,2, Di = 0] =0

E [Yi − β0 −Xi,1β1 − (γ0 +Xi,1γ1) β2 | Xi,1, Di = 1] =0

E [Xi,2 − γ0 −Xi,1γ1 | Xi,1, Di = 0] =0

and the corresponding unconditional moments

E [1(Di = 0) (Yi − β0 −Xi,1β1 −Xi,2β2)] = 0

E [1(Di = 0) (Yi − β0 −Xi,1β1 −Xi,2β2)Xi,1] = 0

E [1(Di = 0) (Yi − β0 −Xi,1β1 −Xi,2β2)Xi,2] = 0

 1st set
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E [1(Di = 1) (Yi − β0 −Xi,1β1 − (γ0 +Xi,1γ1) β2)] = 0

E [1(Di = 1) (Yi − β0 −Xi,1β1 − (γ0 +Xi,1γ1) β2)Xi,1] = 0

 2nd set

E [1(Di = 0) (Xi,2 − γ0 −Xi,1γ1)] = 0

E [1(Di = 0) (Xi,2 − γ0 −Xi,1γ1)Xi,1] = 0

 3rd set

The first and third set of moments point identify β and γ, respectively, and they are based

on the complete subset of the data only. The second set of moments uses the incomplete

part of the data, is derived from our additional assumptions, and leads to overidentifying

restrictions. These overidentifying restrictions are testable and will do so using a modified

version of the J-test (see Section A.6 for a derivation of the test statistic in the general model

and Section 4 for the test results).

It is also important to mention that the assumption that E [Xi,2 | Xi,1, Di = 0] is a linear

function is not required to derive our unconditional moment conditions. To avoid it, we can

use an alternative derivation based on projections, which is less intuitive and discussed in

Section A.3 in the appendix.

Based on the moments, there are different ways to estimate the parameters (β0, β1, β2):

1. Use the complete subset of the data and thus, the first set of moments only.

2. Use the optimal GMM estimator that pools all moments and estimates the parameters

jointly.

3. Use the third set of moments to estimate γ0 and γ1. Then, using the estimated values

and the first two sets of moments, estimate β0, β1, and β2. The estimator will depend

on the GMM weighting matrix in the second step due to the overidentifying restrictions.

Clearly, option 1 does not use all information contained in the data, while the second

option yields the most efficient estimator. However, the moments are nonlinear in the param-

eters and the optimal GMM estimator does not have a closed form solution. It can therefore

be computationally very demanding in large samples and with a large number of predictors,

especially when the parameters are estimated for many different time periods. We will now
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explain that the third option is an appealing alternative, which is easy to implement and

has very good finite sample properties in our simulations.

To gain some intuition, first that suppose γ is known. It then turns out that the optimal

GMM estimator based on the first two sets of moments minimizes

n∑
i=1

(
(1−Di)

(Yi − β0 −Xi,1β1 −Xi,1β2)2

var(εi)
+Di

(Yi − β0 −Xi,1β1 − (γ0 +Xi,1γ1))2

var(εi) + var(X2i − γ0 −Xi,1γ1)β2
2

)

and the denominators of the two fractions can be replaced with consistent estimators. We

prove this equivalence in a more general setting in Appendix A.4. An alternative way to

obtain the estimator is therefore to impute missing values of Xi,2 with the conditional mean

γ0+Xi,1γ1 and then estimate (β0, β1, β2) using the generalized least squares (GLS) estimator.

This estimator then places less weight on observations where Xi,2 has been imputed. To

better understand the reason for down-weighting observations with a missing regressor, define

Zi = X2,i ifDi = 0 and Zi = E[X2,i | X1,i] ifDi = 1. We can then write our outcome equation

as

Yi = β0 +Xi,1β1 + Zi,2β2 + ui

where

ui =


εi if Di = 0

εi + (Xi,2 − γ0 −Xi,1γ1) β2 if Di = 1

Hence, observations with a missing regressor have an unobservable with a larger variance

due to the imputation error. The GMM estimator with the estimated optimal weighting

matrix is simply the feasible GLS estimator.

When γ0 and γ1 have to be estimated as well, the GLS estimator with imputed values

is no longer equivalent to the optimal GMM estimator, but it is much easier to implement.

We study the loss of efficiency in simulations and find that it is generally small.

The usual GLS standard errors for (β0, β1, β2) are not valid with estimated γ0 and γ1.
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Instead, we can interpret the GLS estimator as a GMM estimator with a specific weighting

matrix and derive the corresponding standard errors.

Yet another alternative is to impute the conditional mean and use the OLS instead of

the GLS estimator. This estimator simply ignores the additional variance due to imputation

and is also a GMM estimator with a specific weighting matrix. Our simulations suggests

that this approach may lead worse statistical properties than the complete case estimator,

even when a substantial subset of the data contains missing values. These results are in line

with Gourieroux and Monfort (1981) and Nijman and Palm (1988b) who find that the GLS

estimator is more efficient than the OLS estimator in the presence of one missing pattern.

Finally, a popular approach is to impute the unconditional mean instead of the condi-

tional mean and then estimate (β0, β1, β2) by OLS. Such an approach uses invalid moment

conditions and yields a biased estimator, even in this simple example. To see why, write

Yi = β0 +Xi,1β1 +Xi,2β2 + εi

= β0 +Xi,1β1 + E[Xi,2]β2 + (Xi,2 − E[Xi,2])β2 + εi

When Di = 1 and E[Xi,2] is imputed, the unobservable becomes (Xi,2−E[Xi,2])β2 + εi. But

E[(Xi,2 − E[Xi,2])β2 + εi | Xi,1, Di = 1] = E[(Xi,2 − E[Xi,2]) | Xi,1]β2

which is not 0 unless β2 = 0 or Xi,2 is mean independent of Xi,1.

2.2 General Model

We now consider the general panel data model. Let Yit be the return of firm i at time t

and let Xit ∈ RK be a vector of characteristics. We assume that

Yit =
K∑
k=1

Xit,kβt,k + εit, E[εit | Xit] = 0
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That is,

E[Yit | Xit] =
K∑
k=1

Xit,kβt,k

While the conditional mean function is linear in the parameters, the regressors may include

nonlinear functions of the characteristics. Also notice that the vector Xit contains a constant.

In this model all parameters may depend on t and can be estimated period by period. When

the parameters are time invariant, an alternative is to pool data from different time periods.

We allow the subset of observed regressors to vary by observation. Specifically, we assume

that there are L different missing patterns where for each missing pattern a different subset of

regressors is observed. Let Dit = l if observation i at time t has missing pattern l. In this case

we denote by X
(l)
it ⊆ Xit the subvector of observed characteristics and by I

(l)
t ⊆ {1, . . . , K}

the corresponding indices. As before, for complete observations we use Dit = 0, and in this

case X
(0)
it = Xit.

Similar to the simple example, we can allow data to be missing systematically, but we

impose two conditions. First, we assume that

E
[
εit | X(l)

it , Dit = l
]

= 0

for all l = 0, 1, . . . , L, which implies that

E
[
Yit | X(l)

it , Dit = l
]

=
K∑
k=1

E[Xit,k | X(l)
it , Dit = l]βt,k

Second, we assume that

E
[
Xit,k | X(l)

it , Dit = l
]

= E
[
Xit,k | X(l)

it , Dit = 0
]

for all l = 0, 1, . . . , L. As discussed above, these assumptions allow Dit to depend on regres-

sors that are always observed, and since we observe 18 important firm characteristics, these

assumptions seems to be reasonable in our empirical application (see Section 4 for further

13

Electronic copy available at: https://ssrn.com/abstract=3932438



discussions). We can relax these assumptions by conditioning on additional characteristics

that Dit may depend on, such as industry dummies (see Sections 2.3.2 for more details).

Now define

Z
(l)
it,k = E

[
Xit,k | X(l)

it , Dit = l
]

= E
[
Xit,k | X(l)

it , Dit = 0
]

Notice that if Xit,k ⊆ X
(l)
it , then Z

(l)
it,k = Xit,k is observed. If Xit,k 6⊆ X

(l)
it , then Z

(l)
it,k is not

observed and needs to be estimated, which we do using the subset of observation at time

t where all characteristics are observed (i.e. the complete cases at time t). Under certain

assumptions, we could also use observed covariates from other time periods for imputation,

as discussed in Section 2.3.2. Here, we assume that for all l = 1, . . . , L and k /∈ I(l)
t

E
[
Xit,k | X(l)

it , Dit = l
]

= X
(l)
it

′
γ

(l,k)
t .

Alternatively, we could interpret X
(l)
it

′
γ

(l,k)
t as a linear projection in which case we do not

require a parametric conditional mean assumption. Using our assumptions, we can write for

all l = 1, . . . , L and k /∈ I(l)
t

E
[
Xit,k −X(l)

it

′
γ

(l,k)
t | X(l)

it , Dit = 0
]

= 0.

In addition, for l = 0 we have

E

[
Yit −

K∑
k=1

βt,kX
(0)
it | X

(0)
it , Dit = 0

]
= 0

because in this case all characteristics are observed. Finally, for l = 1, . . . , L, we have

E

[
Yit −

K∑
k=1

βt,kZ
(l)
it,k | X

(l)
it , Dit = l

]
= 0
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where

Z
(l)
it,k = E

[
Xit,k | X(l)

it , Dit = 0
]

=


Xit,k if k ∈ I(l)

t

X
(l)
it

′
γ

(l,k)
t if k /∈ I(l)

t

To estimate the parameters, we use the following unconditional moments:

E

[
1(Dit = 0)

(
Yit −

K∑
k=1

βt,kX
(0)
it,k

)
X

(0)
it

]
= 0 (1)

E

[
1(Dit = l)

(
Yit −

K∑
k=1

βt,kZ
(l)
it,k

)
X

(l)
it

]
= 0 l = 1, . . . , L (2)

E
[
1(Dit = 0)

(
Xit,k −X(l)

it

′
γ

(l,k)
t

)
X

(l)
it

]
= 0 l = 1, . . . , L and k /∈ I(l)

t (3)

These three sets of moment conditions are analogous to the ones we used in the simple

example. The moment conditions in (1) and (3) point identify βt and γ
(l,k)
t , respectively,

and are based on the complete subset of the data only. The moment conditions in (2) are

additional restrictions that yield efficiency gains.

Just as in the simple example, there are different ways to estimate the parameters. One

option that we pursue in the application is to estimate γ
(l,k)
t using the third set of moments

and then use the first two sets of moments, along with the estimates of γ
(l,k)
t , to estimate βt.

In the second step, we use the weight matrix that is optimal with known γ
(l,k)
t . As before,

this estimator is equivalent to the GLS estimator where missing value are replaced with the

estimated mean, conditional on the set of observed regressors. The estimator accounts for

the additional variance due to imputation. In general, the more regressors are imputed,

the less weight is placed on an observation. We derive the large sample distribution of the

estimator in the Appendix A.5 and provide plug-in estimators for the standard errors.

A potential alternative is the optimal GMM estimator, which can be hard to compute

in practice because the objective function is not quadratic in the parameters. In fact, in

our empirical application with large numbers of observations and regressors, this estimator

is computationally infeasible.
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2.3 Extensions

2.3.1 High-Dimensional and Nonlinear Models

Our two-step estimator can also be applied in high-dimensional and nonlinear models.

Recall that we estimate conditional mean functions in the first step. Instead of using a linear

regression model, we could also employ machine learning methods, such as a neural networks

or random forests. Within the linear framework, but with a number large of regressors, we

could also use a penalized estimator such as the LASSO estimator or the Ridge estimator.

Constructing a consistent estimator in the second step is more complicated. To illustrate

potential problems, let’s return to the simple cross-sectional example, and suppose that

Yi = β0 +Xi,1β1 +X2
i,1β2 +Xi,2β3 +X2

i,2β4 + εi, E[εi | Xi] = 0

As before, Xi,1 is always observed, but Xi,2 is not, and Di = 1 denotes the case where Xi,2

is missing. We then have

E[Yi | Xi,1, Di = 1] = β0 +Xi,1β1 +X2
i,1β2 + E[Xi,2 | Xi,1]β3 + E[X2

i,2 | Xi,1]β4

Hence, we could impute estimates of E[Xi,2 | Xi,1] and E[X2
i,2 | Xi,1] for Xi,2 and X2

i,2,

respectively, and estimate the parameters by GLS.

A potential alternative could be to define to Zi = X2,i if Di = 0 and Zi = E[X2,i | X1,i]

if Di = 1 and regress Yi on X1,i, X
2
1,i, Zi, and Z2

i . However, since Z2
i = E[Xi,2 | Xi,1]2 6=

E[X2
i,2 | Xi,1], the resulting estimator is inconsistent. These issues carry over to other

nonlinear models.

One possibility to allow for nonlinearities and models selection simultaneously, which we

use in our application, is the group LASSO estimator of Freyberger et al. (2020). Similar

to the simple example above, in the first step one needs to impute conditional expectations

of nonlinear transformations of the regressors (such as polynomials or splines). The second

step is then simply the estimator of Freyberger et al. (2020), with the possibility of down-
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weighting observations with imputed values. This approach not only allows for nonlinearities

but also pre-specified interactions.

2.3.2 Additional covariates

We could use additional covariates to relax our missing at random assumptions or to

obtain better imputations. In our application, these variables might include additional

firm characteristics or characteristics from other periods. We now briefly describe differ-

ent approaches using our introductory example and discuss the details in Section A.2 in the

appendix.

Consider again the simple model

Yi = β0 +Xi,1β1 +Xi,2β2 + εi, E[εi | Xi] = 0

where Xi,1 is a always observed, but Xi,2 might be missing. Let Di = 0 if observation i is

complete and let Di = 1 if Xi,2 is missing. To derive the estimator, our two main assumptions

on the missing patterns are:

E [εi | Xi,1, Xi,2, Di = 0] = 0

and

E [Xi,2 | Xi,1, Di = 0] = E [Xi,2 | Xi,1, Di = 1] ,

and a sufficient condition for these assumptions is

Di ⊥⊥ Yi, Xi,2 | Xi,1

Let Vi be an additional vector of covariates that is always observed, such as industry dum-

mies, which do not have a direct effect on the outcomes. We can then weaken the conditional

independence assumption to

Di ⊥⊥ Yi, Xi,2 | Xi,1, Vi.
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One can then show that

E

[
(Yi − β0 −Xi,1β1 −Xi,2β2)

P (Di = 0 | Xi,1, Vi)
| Xi,1, Xi,2, Di = 0

]
= 0

and

E

[
(Yi − β0 −Xi,1β1 − E[Xi,2 | Xi,1, Vi, Di = 0]β2)

P (Di = 1 | Xi,1, Vi)
| Xi,1, Di = 1

]
= 0

Hence, we impute Xi,2 using both Xi,1 and Vi and then use moments as before, but weighted

by the inverse of the conditional probability of Di (inverse propensity score weighting).

This previous approach does not require an assumption on how Vi relates to εi. Now

suppose we also assume that E[εi | Xi, Vi] = 0, which might be reasonable for industry

dummies and characteristics from other time periods. It can then be shown that

E [Yi − β0 −Xi,1β1 −Xi,2β2 | Xi,1, Xi,2, Vi, Di = 0] = 0

and

E [Yi − β0 −Xi,1β1 − E[Xi,2 | Xi,1, Vi, Di = 0]β2 | Xi,1, Vi, Di = 1] = 0

Again, we can impute Xi,2 using both Xi,1 and Vi, but with the additional assumption,

the moments are more informative (because we also condition on Vi) and we avoid inverse

propensity score weighting.

3 Simulations

We now illustrate the statistical properties of our estimator and alternative approaches

in various Monte Carlo simulations. We start with a low-dimensional setting and mainly

focus on efficiency and inference. We then consider a high-dimensional setting and discuss

model selection and out-of-sample predictions.

18

Electronic copy available at: https://ssrn.com/abstract=3932438



3.1 Low-dimensional setting

We start with the model

Yi =
K∑
k=1

Xi,kβk + εi, E[εi | Xi] = 0

where K = 5 and Xi,1 = 1. We let Xi,2, . . . , Xi,K be jointly normally distributed with means

of 0 and cov(Xi,k, Xi,j) = 0.9|k−j| and εi ∼ N(0, 1). The true values of the coefficients are

β = (1, 0.5, 1,−1, 3)′.

We consider three different types of missing patterns given in Figure 1. In the first setup,

there is one subset of complete observations (l = 0) and one subset where Xi,3 is missing

(l = 1). In the second setup, there is one subset of complete observations (l = 0) and one

Figure 1: Missing Patterns

This figure shows examples for missing patterns. For all settings l = 0 denote the complete case, i.e. the fraction of that data

for which all covariates (and the outcome) are observed. In Setup 1, some part of the data are missing the third covariate

(Xi,3). In Setup 2, some part of the data are missing three covariates (Xi,2, Xi,4, Xi,5). Setup 3 is a general missing pattern,

some part of the data are missing the third covariate (Xi,3), another part are missing the fifth covariate (Xi,3) and another

part of the data are missing the fourth and the fifth covariate (Xi,4, Xi,5).
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Table 1: Simulation - Coverage and Length of Confidence Intervals

This table shows the coverage probabilities of 90% confidence intervals and the length of the confidence intervals for the three

sets of missing patterns described in Figure 1 when 50% of the data are missing at random.

Complete Case Optimal GMM Imputation GLS Imputation OLS Uncond. Mean
Cover Length Cover Length Cover Length Cover Length Cover Length

Setup 1

β1 0.908 0.147 0.888 0.109 0.885 0.109 0.891 0.110 0.890 0.109
β2 0.893 0.337 0.905 0.291 0.903 0.291 0.902 0.293 0.000 0.193
β3 0.896 0.453 0.902 0.452 0.902 0.452 0.896 0.454 0.000 0.208
β4 0.905 0.453 0.901 0.367 0.900 0.368 0.905 0.370 0.000 0.297
β5 0.907 0.337 0.903 0.249 0.900 0.249 0.905 0.252 0.909 0.251

Setup 2

β1 0.908 0.147 0.897 0.136 0.909 0.139 0.893 0.190 0.824 0.160
β2 0.893 0.337 0.892 0.337 0.894 0.337 0.893 0.338 0.000 0.399
β3 0.896 0.453 0.896 0.449 0.895 0.451 0.888 0.470 0.000 0.214
β4 0.905 0.453 0.897 0.453 0.902 0.453 0.905 0.455 0.000 0.614
β5 0.907 0.337 0.906 0.337 0.905 0.337 0.908 0.338 0.979 0.518

Setup 3

β1 0.905 0.147 0.907 0.121 0.901 0.122 0.912 0.150 0.862 0.164
β2 0.895 0.337 0.893 0.293 0.891 0.297 0.903 0.369 0.001 0.311
β3 0.901 0.453 0.903 0.424 0.903 0.428 0.914 0.516 0.481 0.331
β4 0.902 0.454 0.896 0.402 0.892 0.404 0.900 0.439 0.000 0.378
β5 0.905 0.337 0.901 0.294 0.900 0.295 0.906 0.299 0.000 0.341

subset where all regressors except for Xi,3 are missing (l = 1). In the last setup, there are

four subsets of the data with different missing patterns.

Table 1 shows coverage rates and average lengths of 90% confidence intervals for the

different setups when the complete sample contains 50% of the observations. The sample

size is n = 1, 000 and we ran 1, 000 Monte Carlo simulations. We report results for the

estimator that only uses the complete subset, the imputation GLS estimator, the imputation

OLS estimator, and the estimator that imputes the unconditional mean.

In setup 1 only Xi,3 may be missing. Comparing the complete case and the optimal

GMM estimator, we can see that for all coefficients, except for β3, the average lengths of

the confidence intervals decreases substantially. Both the GLS and the OLS estimator with

conditional mean imputation perform almost as well as the optimal GMM estimator. All

of these four estimators have coverage probabilities close to 90%. The estimator based
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Figure 2: Simulation - Histograms for Setup 3

This figure shows histograms of the repeated sample distribution for estimates of β2 (panel a) and standard errors of β̂2 (panel

b) in the general missing pattern (Setup 3 of Figure 1). The vertical bar indicates the correct value for the parameter, β2 = 0.5.
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(b) Standard Errors of β̂2
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on unconditional mean imputation has low coverage rates, which is due to the bias of the

estimator (to be discussed in more detail below). Interestingly, the confidence intervals can be

much narrower than those of the optimal GMM estimator. The reason is that the regressors

appear less correlated once the unconditional mean is imputed. In setup 2, more regressors

are missing and the gains from imputation are lower. Setup 3 has more complicated missing

patterns, but the results are overall similar to those of setup 1. One difference is that the

GLS estimator performs much better than the OLS estimator. In fact the average length of

the confidence intervals of the OLS estimator can be larger than those of the complete case

estimator. While the OLS estimator uses more moment conditions, it combines them in an

inefficient way. To illustrate these points further, Figure 2 shows histograms of the estimates

of β2 and the corresponding standard errors for setup 3. We can see that the imputation

estimator and the optimal GMM estimator perform very similarly and are both more efficient

than the estimator based on the complete case. In addition, mean imputation yields both a

bias and artificially small standard errors. Table 2 shows results for setup 3 with a different

Table 2: Simulation - Coverage and Length of Confidence Intervals for Varying Missing
Percentage

This table shows the coverage probabilities of 90% confidence intervals and the length of the confidence intervals for the general

missing pattern (setup 3) in Figure 1 when 75% and 25% of the data are missing at random.

Complete Case Optimal GMM Imputation GLS Imputation OLS Uncond. Mean
Cover Length Cover Length Cover Length Cover Length Cover Length

25% complete

β1 0.904 0.208 0.881 0.141 0.876 0.149 0.902 0.204 0.758 0.173
β2 0.892 0.475 0.872 0.366 0.881 0.397 0.894 0.536 0.000 0.316
β3 0.891 0.642 0.879 0.563 0.884 0.605 0.895 0.792 0.004 0.332
β4 0.883 0.642 0.893 0.501 0.896 0.519 0.915 0.610 0.000 0.365
β5 0.906 0.478 0.887 0.348 0.892 0.353 0.907 0.362 0.000 0.373

75% complete

β1 0.889 0.120 0.890 0.110 0.887 0.111 0.888 0.123 0.887 0.145
β2 0.889 0.275 0.893 0.258 0.890 0.259 0.910 0.290 0.062 0.294
β3 0.918 0.370 0.905 0.359 0.905 0.360 0.891 0.394 0.792 0.338
β4 0.898 0.370 0.888 0.352 0.891 0.352 0.890 0.366 0.000 0.375
β5 0.907 0.275 0.901 0.261 0.899 0.261 0.907 0.263 0.000 0.310
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percentage of complete observations. When the fraction of complete observations is low,

the relative gains from imputation are larger and the differences between OLS and GLS are

much more striking.

The poor coverage probability obtained from imputing unconditional means is due to the

large bias of the estimator. We show the biases for setup 3, again with a different percentage

of complete observations, in Table 3. Even when 75% of the sample is complete, the bias is

substantial. The biases of all other estimators are negligible. In that table, we also report the

root mean squared errors (RMSE) of the different estimators. We can see that the optimal

GMM estimator can be much more precise than the estimator based on the complete sample.

The GLS estimator is almost as precise as the optimal GMM estimator and generally much

more precise than the OLS estimator.

Table 4 shows results for setup 3 with independent regresssors when the complete sample

Table 3: Simulation - Bias and Model Fit for a General Missing Pattern

This tables shows the bias in the estimated coefficients and the root mean-squared error for the general missing pattern (Table

1, setup 3) when different percentages of the data are missing.

Complete Case Optimal GMM Imputation GLS Imputation OLS Uncond. Mean
RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

25% complete

β1 0.064 0.003 0.045 0.001 0.047 0.000 0.063 0.000 0.072 0.000
β2 0.146 0.006 0.121 -0.009 0.131 -0.003 0.170 -0.007 0.516 0.507
β3 0.195 -0.005 0.179 0.018 0.190 0.008 0.240 0.015 0.428 0.417
β4 0.201 -0.004 0.158 -0.015 0.157 -0.001 0.175 -0.002 1.355 1.350
β5 0.144 0.000 0.108 0.005 0.107 -0.003 0.106 -0.006 1.357 -1.353

50% complete

β1 0.045 0.001 0.037 0.000 0.037 0.000 0.045 0.000 0.056 0.002
β2 0.101 0.004 0.090 0.001 0.091 0.001 0.111 -0.001 0.476 0.466
β3 0.135 -0.005 0.126 -0.003 0.128 -0.003 0.150 -0.002 0.204 0.175
β4 0.137 -0.001 0.126 0.000 0.126 0.002 0.135 0.003 1.125 1.115
β5 0.102 0.001 0.090 0.001 0.091 0.000 0.090 -0.001 1.255 -1.250

75% complete

β1 0.037 0.000 0.035 0.000 0.035 0.000 0.038 0.000 0.046 0.002
β2 0.084 0.000 0.080 0.000 0.080 0.000 0.087 0.001 0.309 0.294
β3 0.110 -0.001 0.110 0.000 0.110 0.000 0.120 0.000 0.130 0.053
β4 0.115 0.000 0.111 0.001 0.111 0.001 0.114 0.001 0.717 0.701
β5 0.083 -0.001 0.081 -0.002 0.081 -0.002 0.080 -0.002 0.815 -0.806
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contains 50% of the observations. In this case, the conditional expectations of the regressors

are equal to the unconditional ones and thus, imputing unconditional means leads to valid

moment conditions. However, the moment conditions are combined in an inefficient way

because observations with missing regressors have the same weight as complete observations.

Using the GLS estimator or the optimal GMM estimator leads to a much better performance.

Moreover, the standard errors with unconditional mean imputation are incorrect because

they do not account for the fact that the imputed means are estimated.

One setting where unconditional mean imputation outperforms the other methods is

when all regression coefficients in front of regressors that have missing values are equal to 0.

In this case, unconditional mean imputation leads to correct moment conditions, as discussed

at the end of section 2.1. Moreover, imputing the conditional or the unconditional mean does

not increase the variance of the error term and thus, there are no benefits from using GLS.

We show simulation results in Table 5 for setup 3 when β = (1, 0.5, 0, 0, 0)′ and the complete

sample contains 50% of the observations. In this case, imputing the unconditional means

decreases the correlation between the regressors, which reduces the variance of the estimated

coefficients and the length of the confidence intervals. Since the moment conditions are valid,

the estimator is also asymptotically unbiased. Consequently, it also has a lower mean squared

error compared the estimators that impute conditional means. Clearly, in applications we do

not know a priori if coefficients are equal to 0, and we should therefore not rely on the mean

Table 4: Simulation - Coverage and Length of Confidence Intervals with Independent Re-
gresssors

This table shows the coverage probabilities of 90% confidence intervals and the length of the confidence intervals for the general

missing pattern (setup 3) in Figure 1 when all regressors are independent.

Complete Case Optimal GMM Imputation GLS Imputation OLS Uncond. Mean
Cover Length Cover Length Cover Length Cover Length Cover Length

β1 0.905 0.147 0.899 0.135 0.895 0.136 0.877 0.266 0.805 0.217
β2 0.910 0.147 0.891 0.134 0.894 0.136 0.920 0.265 0.907 0.216
β3 0.889 0.147 0.882 0.143 0.889 0.145 0.913 0.309 0.906 0.250
β4 0.897 0.147 0.902 0.135 0.902 0.136 0.905 0.220 0.910 0.197
β5 0.906 0.147 0.897 0.136 0.895 0.138 0.898 0.149 0.898 0.143
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Table 5: Simulation - Coverage and Length of Confidence Intervals when β = (1, 0.5, 0, 0, 0)′

This table shows the coverage probabilities of 90% confidence intervals and the length of the confidence intervals for the general

missing pattern (setup 3) in Figure 1 when all regressors that may be missing do not affect the outcome.

Complete Case Optimal GMM Imputation GLS Imputation OLS Uncond. Mean
Cover Length Cover Length Cover Length Cover Length Cover Length

β1 0.905 0.147 0.881 0.103 0.880 0.103 0.897 0.104 0.898 0.104
β2 0.895 0.337 0.889 0.246 0.894 0.246 0.897 0.249 0.883 0.197
β3 0.901 0.453 0.902 0.366 0.904 0.366 0.914 0.370 0.888 0.210
β4 0.902 0.454 0.894 0.377 0.897 0.377 0.895 0.381 0.887 0.239
β5 0.905 0.337 0.892 0.290 0.893 0.290 0.902 0.293 0.900 0.216

imputation to deliver satisfactory results. As discussed below, to determine which regressors

are irrelevant, we can carry out model selection to obtain a smaller model.

3.2 High-dimensional setting

We now again simulate data from the linear model

Yi =
K∑
k=1

Xi,kβk + εi, E[εi | Xi] = 0

but we use K = 40 regressors. As before, Xi,1 = 1, Xi,2, . . . , Xi,K are jointly normally

distributed with means of 0 and cov(Xi,k, Xi,j) = 0.9|k−j|, and εi ∼ N(0, 1).

We also again choose the first five elements of β to be (1, 0.5, 1,−1, 3)′ and the remaining

35 elements are all equal to 0. For the first five regressors, we use the same missingness

pattern as in Setup 3 above with L = 3. When l = 0 or l = 3, all other regressors are

observed as well. When l = 1, Xi,36, Xi,37, . . . , Xi,40 are not observed and when l = 2, Xi,6

and Xi,7 are not observed. The probability that an observation is missing now varies with

Xi,2, which is always observed. In particular, observations with high values of Xi,2 are more

likely to be complete.

We now consider four different estimators, namely the estimator that only uses the com-

plete subset, the imputation GLS estimator, the imputation OLS estimator, and the esti-

mator that imputes the unconditional mean. For all estimators, we estimate the parameters
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Figure 3: Model Selection - Sparse Model

This figure shows the model selection results for the sparse example (Section 3). The darker the color, the more frequent a

particular model estimates a non-zero βi. In the true model, the first five betas are non-zeros (above the red line), whereas the

rest is equal to zero.
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β1, β2, . . . , β40 using the adaptive-post-LASSO method and choose the penalty parameter

based on the BIC. We use the same LASSO procedure for the imputation step. All estima-

tor are very easy to implement using standard software.

Figure 3 illustrates the frequency with which the different methods select regressors. The

complete case estimator and both conditional mean imputation estimators select the vari-

ables with nonzero coefficients with very large probability and typically set coefficients of

irrelevant variables to 0. Unconditional mean imputation tends to set the estimated value of

β4 to 0 and instead frequently includes three of the irrelevant regressors. The mean squared

prediction errors (MSPEs) of the four methods are 1.0187, 1.0105, 1.0141, and 1.7059, respec-

tively, showing that the imputation GLS estimator performs best and unconditional mean

imputation performs worst. For the out-of-sample predictions, we generate a new sample of

complete observations with a sample size of 5, 000.
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Figure 4: Model Selection - Dense Model

This figure shows the model selection results for the non-sparse example (Section 3). The darker the color, the more frequent

a particular model estimates a non-zero βi. In the true model, the first five betas are non-zeros (above the red line), whereas

the rest is equal to zero.
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The previous case was sparse, in the sense that only 5 coefficients are not equal to 0.

We now assume that βj = 0.8j, but leave all other features of the data generating process

unchanged. The selection results are illustrated in Figure 4. We can see that for the complete

case estimator and both conditional mean imputation estimators, the larger a coefficient,

the more likely it is not set to 0. This monotonicity does not hold for unconditional mean

imputation. Here the estimated value of β5 is often set to 0, but regressors with smaller

coefficients are included much more frequently. The MSPEs of the four methods are 1.0552,

1.0345, 1.0343, and 1.0887, respectively.

Another case where imputation works particularly well is when regressors with missing

values to do not have an impact on the outcome. To illustrate this situation, again consider

the sparse setting, but let β1 = 1, β2 = β3 = · · · = β21 = 0, (β22, . . . , β25) = (0.5, 1,−1, 3),

and the remaining 15 elements be all equal to 0. The results are reported in Figure 5. In this
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Figure 5: Model Selection - Missing Regressor Irrelevant

This figure shows the model selection results for a non-sparse example (Section 3) when none of the potentially missing regressors

affect the outcome The darker the color, the more frequent a particular model estimates a non-zero βi. The non-zero coefficients

of the true model are separated with red lines.
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case, the imputation methods mostly ignore regressors with missing values, but can make use

of the full data set. The MSPEs of the four methods are 1.0206, 1.0076, 1.0075, and 1.0072

respectively. Therefore, all imputation methods perform similarly well and outperform the

complete case.

One advantage of imputations is that the whole sample can be used for predictions.

The MSPE for the subset of non-complete observations is typically higher than for the

complete observations, but the complete case might miss particularly interesting parts of the

conditional distribution of outcomes. To illustrate this feature, Figure 6 plots the out-of-

sample outcomes against the predictions obtained with the different methods. Recall that

the probability that an observation is completely observed depends on Xi,2. When using

imputations, we make predictions for all outcomes, even when some regressors are missing.

Comparing panels (a) and (b) we can see that the observations with missing regressors tend
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Figure 6: Outcomes versus predictions

This figure shows out-of-sample outcomes against the predictions when the probability of an observation being complete depends

on the regressors.
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to have lower outcomes. There are two important implications for out-of-sample portfolio

sorts that we will discuss in more detail in our application. First, when using imputations,

we have a large number of observations we can form portfolios with. Therefore, the number

of observations corresponding to the 10% highest and lowest predictions is much higher when

using imputations, and portfolio variances will be lower. When we instead fix the number

of observations in each portfolio (instead of the %), we will observe a large difference in

portfolio returns. Second, when the probability that an observation is missing depends

on the observed covariates, the complete case misses a systematically different part of the
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distribution of outcomes, and not just a random sample. In this case, differences in portfolio

returns will be even more distinctive. Finally, panel (d) shows that imputing unconditional

means yields biased predictions. However, since predictions and outcomes are still positively

related, portfolio formed based on these predictions will be very similar to those obtained

with conditional mean imputation.

4 Data

We use stock returns, volume and price data from the Center for Research in Security

prices (CRSP) monthly stock file. Following standard conventions in the literature, we

restrict the analysis to common stocks of firms incorporated in the US trading on NYSE,

Nasdaq or Amex. Balance sheet data is obtained from Compustat.

In order to avoid potential forward looking biases, we lag all characteristics that build on

Compustat annual by at least six months and all that build on Compustat quarterly by at

least four months. Our main dataset is obtained from Chen and Zimmermann (2021) and

consists of 40 firm characteristics that are available from 1965 - 2020. The firm characteris-

tics feature a combination of accounting information as well as versions of momentum and

functions of trading volume. Table A.1 provides an overview of the characteristics we use

in our main empirical analysis. It should be noted that these predictors are not a randomly

selected set of features, but have been found to be successful cross-sectional predictors in

the literature.

Table A.1 also shows the fraction of missing values per characteristic. Overall, we have a

total of 3,051,103 firm month observations. Fama and French (1992) define the benchmark

for empirical analysis of the cross-section of expected returns. We follow them and require

that a minimum of information is available for each firm. As Fama-French we require the

inputs (market beta, size, and book-to-market) of the Fama-French 3 factor model to be

available for all firms. When we condition on firms having beta, bm and size available,

we have 2,315,566 firm month observations. The complete case consists of only 243,443
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firm month observations, i.e. the complete case would discard around 90% of all available

return observations. This makes the complete case analysis rather inefficient. Recall that we

assume that the data is missing at random conditional on the characteristics that are always

observed. If we drop an additional 17,695 observations, we always observe the following

characteristics: exchswitch, divinit, divomit, opleverage, leverage, high52, indmom,

mom12m, mom6m, mom1m, intmom, beta, bm, am, idiorisk, maxret, coskewness and size. We

then only loose very few additional observations, but our main assumption is much more

palatable. Hence, our data set has a total of 2,297,871 firm month observations. In the

empirical analysis we always apply the rank-transformation as in Freyberger et al. (2020)

such the the continuous characteristics are always uniformly distributed on [0, 1], a standard

transformation, which is also applied in Kozak et al. (2020), Gu et al. (2020) and many

others.

To gain some more intuition about characteristics of firms for which some characteristic

is missing and for which none is missing, we plot the distribution of some characteristics in

Figure 7. We can see from the figure that there are systematic differences in the unconditional

distribution of the characteristics between the cases for which something is missing and the

complete case. In particular, Figure 7 illustrates that firms for which some characteristic is

missing tend to be smaller, have higher betas, lower book-to-market ratios. The returns for

the incomplete case are more dispersed relative to the complete case. It is important to note

that this is not a violation of our missing at random assumption. The assumption allows for

unconditional differences in the characteristics but not conditional on the always observed

characteristics.

To further investigate the conditional difference we follow an indirect route. As mentioned

in Section 2, while our missing at random assumption is not directly testable, we can test

the implications of the assumption that we use to construct our estimator. In particular, our

imputation based estimator uses additional moment restrictions (relative to the complete case

estimator) that are derived from the missing at random assumption. Since these moments
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Figure 7: Comparison of Complete and Incomplete Samples

This figure illustrates unconditional difference for some characteristics (upper panel) and return (lower panel) between the stock

for which the observations are complete, relative to the stocks which have some items missing.
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conditions are over-identifying, we can test the null hypothesis that they hold, i.e.

H0 : E

[
1(Dit = l)

(
Yit −

K∑
k=1

βt,kZ
(l)
it,k

)
X

(l)
it

]
= 0 l = 1, . . . , L

using a J-test. The technical details are explained in Section A.6. We implement this test on

a period-by-period basis and find that it rejects the null hypothesis that the over-identifying

restrictions hold in only 0.94% of the time periods with a 1% significance level, in 4.09% of

the time periods with a 5% significance level and in 8.96% of the time periods with a 10%

significance level. These are exactly the rejection probabilities we would expect if the null

hypothesis was true in all time periods and if the tests were independent.
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5 Empirical Application

In this section we illustrate the empirical effect of different choices for treating miss-

ing data in several applications: out of sample return prediction and determining which

characteristics provide incremental information.

5.1 Out-of sample predictions

We first illustrate the different ways of treating missing regressors in a classic empirical

asset pricing application - cross-sectional out-of-sample return predictions. We report results

for three different methods, namely (1) estimate the prediction model only on the completely

observed data, (2) estimate the model on the data for which we imputed the conditional

mean with the GLS weighting scheme, and (3) estimate the model on the data for which we

imputed the unconditional mean with OLS. Afterwards, we also illustrate how to use our

approach in a regularized additive model, in which we carry out model selection using the

adaptive group LASSO of Huang et al. (2010) and Freyberger et al. (2020).

Throughout, we make rolling out-of-sample predictions for the next month using an

estimation window of 120 months. We then sort stocks into portfolios based on the predicted

return. We consider two portfolio implementations, where we go long the stocks with highest

10% (50%) predicted returns and go short the stocks with lowest 10% (50%) predicted return.

We then record the return for the out-of-sample month, slide the estimation window forward

and repeat the portfolio formation exercise throughout the sample. Our out-of-sample period

is 1990 through 2018. The results are summarized in Table 6.

Panel A of Table 6 shows the results for the linear model using all characteristics. For

the 50-50 portfolio, we see that the complete-case analysis yields the lowest average returns

at about the same level of volatility as the conditional mean and unconditional mean im-

putation. The complete case method simply does not use an interesting subset of securities

that could otherwise be invested in. While the conditional mean method delivers slightly

better performance on average, the differences between the two appear to be relatively small

33

Electronic copy available at: https://ssrn.com/abstract=3932438



Table 6: Performance Statistics For Out-of-Sample Predictions

This table shows annualized average returns, standard deviations, Sharpe ratios for portfolios sorted on the out-of-sample

return prediction. We differentiate between the complete case method, conditional mean imputation and GLS weighting and

unconditional mean imputation. Long Pf. and Short Pf. denote the annualized average return of the long and short leg

respectively. Skewness and kurtosis are the sample statistics of the monthly returns and maximum drawdown is measured

from peak to trough. The implementation of the linear and polynomial model is detailed in Section 5.1. The sample period is

1990-2018.

Mean (%)
Standard

Deviation (%)
Sharpe
Ratio

Long
Pf. (%)

Short
Pf. (%)

Skewness Kurtosis
Maximum
Drawdown

Panel A: Linear Model

Long (short) 50% highest (lowest) predicted returns
Complete Case 6.07 6.41 0.95 17.13 11.06 -0.25 2.62 0.17
Cond. Mean (GLS) 13.14 7.20 1.82 20.70 7.56 1.16 8.64 0.19
Uncond. Mean 12.13 7.33 1.65 20.19 8.06 1.11 8.60 0.19

Long (short) 10% highest (lowest) predicted returns
Complete Case 9.85 14.59 0.68 19.80 9.95 -0.08 3.20 0.53
Cond. Mean (GLS) 35.19 16.99 2.07 33.10 -2.09 1.05 6.78 0.40
Uncond. Mean 33.64 16.99 1.98 31.87 -1.77 1.05 6.67 0.39

Panel B: Nonlinear Model

Long (short) 50% highest (lowest) predicted returns
Complete Case 5.22 5.84 0.90 16.71 11.48 -0.06 3.11 0.16
Cond. Mean (GLS) 14.65 6.21 2.36 21.45 6.80 1.56 11.07 0.12
Uncond. Mean 13.83 6.07 2.28 21.04 7.21 1.08 8.35 0.12

Long (short) 10% highest (lowest) predicted returns
Complete Case 12.95 15.35 0.84 21.30 8.35 -0.41 5.19 0.41
Cond. Mean (GLS) 46.02 17.58 2.62 42.07 -3.94 1.89 9.56 0.21
Uncond. Mean 44.70 17.24 2.59 40.66 -4.03 1.60 7.15 0.19

Panel C: Regularized Nonlinear Model

Long (short) 50% highest (lowest) predicted returns
Complete Case (LASSO) 3.37 6.24 0.54 15.78 12.41 -1.35 13.08 0.31
Cond. Mean (GLS / LASSO) 14.11 5.85 2.41 21.18 7.07 1.06 5.91 0.09
Uncond. Mean (LASSO) 12.97 6.06 2.14 20.61 7.64 1.05 8.44 0.11

Long (short) 10% highest (lowest) predicted returns
Complete Case (LASSO) 9.43 17.38 0.54 20.63 11.20 -1.94 14.43 0.91
Cond. Mean (GLS / LASSO) 45.70 17.13 2.67 41.62 -4.08 1.62 7.24 0.17
Uncond. Mean (LASSO) 43.71 17.20 2.54 39.80 -3.91 1.36 5.21 0.17

in the prediction application. The differences between the complete case method and the

imputation approaches are even larger in the “10-1” portfolio.

The Panel B and Panel C illustrate the results for a nonlinear model, i.e. an additive

model as outline in Section 2.3.1. In Panel B we present the results for the additive model

using all 40 characteristics. As in the case of the linear model, using only the complete cases

results in very low returns relative to the conditional and unconditional mean imputation.

Both Panel B and Panel C show that modeling returns as a nonlinear function of character-
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istics yields much better predictions. Notably, the difference between the linear model and

nonlinear models is more pronounced for the “10-1” portfolio as most of the nonlinearities

in the predictive relationship occurs in the extremes of the characteristics distributions.

For the results in Panel C, we first carry out a model selection step over the period from

1965 through 1989. We apply the adaptive group LASSO as in Freyberger et al. (2020)

to select the most important characteristics over the first part of the sample and then,

exactly as for the other methods, make rolling one-month predictions using an estimation

window of 120 months. Overall, the results are very similar to those in Panel B. Again

note that the predictors are known to predict cross-sectional predictors a priori and it is

therefore not surprising that including all of them in the model may yield favorable results.

Figure 8: Selected Characteristics with the Group LASSO Procedure.

This figure shows the selected characteristics using the group LASSO procedure for each of the three methods.
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Model selection will play a more important role in other data sets with a large number

of characteristics, in which some are irrelevant or have only very small influence. While

the imputation methods perform similarly with and without regularization, in the complete

case, the regularized model leads to considerably worse performance. The reason is that

the complete case contains much fewer observations and is consequently less likely to detect

significant return predictors. As can see from Figure 8, we only select 4 characteristics using

the complete case, and we select considerably more with the other two methods.

5.2 Incremental Information

We now re-visit the the classic question if a characteristic contains incremental informa-

tion relative to previously discovered characteristic. Cochrane (2011) raises this question

in his presidential address. While the previous literature mostly proceeded in a “univariate

fashion”, i.e. analyzing one characteristic at a time, recent papers e.g. by Green et al. (2017),

Freyberger et al. (2020), Kozak et al. (2020) and Gu et al. (2020) make it abundantly clear

that we need to consider characteristics jointly and to determine if a characteristics provides

incremental information, we need to control for the ones that were previously discovered.

The more characteristics we want to consider within the same model, the more our choices

about missing data may affect the results. We illustrate this by studying the characteristics

listed in Table A.1 in the appendix. For each characteristic, we consider if it should have

been recognized as containing incremental information at the time of discovery (based on

the publication dates in Table A.1) when previous characteristics are taken into account.

Throughout we compare the three approaches to treating missing data, the complete case

approach, the conditional mean imputation with GLS weighting, and the unconditional mean

imputation. We then estimate the following linear model

Yit = β0 + β1Xit,1 + β2Xit,2 + . . .+ βk−1Xit,k−1︸ ︷︷ ︸
previously published characteristics

+ βkXit,k︸ ︷︷ ︸
new candidate

+εit. (4)
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Table 7: Significance test results

This table shows the estimates, standard errors, and adjusted p-value for each new characteristics.

Complete case Conditional mean (GLS) Unconditional mean
Characteristic Est. se p-value Est. se p-value Est. se p-value
zerotrade -0.0092 0.0063 1.0000 -0.0034 0.0038 1.0000 0.0030 0.0044 1.0000
opleverage 0.0024 0.0026 1.0000 0.0049 0.0016 0.0186 0.0062 0.0016 0.0014
noa 0.0042 0.0016 0.1945 0.0096 0.0017 0.0000 0.0102 0.0016 0.0000
netdebtprice -0.0050 0.0183 1.0000 0.0223 0.0124 0.4535 0.0013 0.0023 1.0000
mom6m -0.0023 0.0029 1.0000 -0.0103 0.0026 0.0014 -0.0091 0.0025 0.0042
mom1m -0.0150 0.0026 0.0000 -0.0249 0.0024 0.0000 -0.0243 0.0024 0.0000
mom12m 0.0138 0.0030 0.0005 0.0163 0.0026 0.0000 0.0180 0.0025 0.0000
me -0.0155 0.0045 0.0297 -0.0151 0.0047 0.0155 -0.0152 0.0047 0.0139
maxret 0.0035 0.0038 1.0000 -0.0043 0.0030 0.8715 -0.0046 0.0030 0.6614
leverage 0.0028 0.0028 1.0000 0.0060 0.0019 0.0182 0.0068 0.0020 0.0074
intmom 0.0078 0.0035 0.3896 0.0013 0.0022 1.0000 0.0010 0.0023 1.0000
indmom 0.0009 0.0016 1.0000 0.0097 0.0018 0.0000 0.0096 0.0018 0.0000
illiquidity -0.0304 0.0141 0.4131 -0.0075 0.0111 1.0000 -0.0161 0.0096 0.5754
idiorisk -0.0028 0.0044 1.0000 -0.0066 0.0034 0.3621 -0.0055 0.0029 0.3980
high52 0.0025 0.0039 1.0000 0.0191 0.0047 0.0011 0.0202 0.0045 0.0002
herf -0.0002 0.0020 1.0000 0.0045 0.0016 0.0402 0.0036 0.0013 0.0624
grltnoa 0.0002 0.0012 1.0000 0.0022 0.0011 0.3782 0.0019 0.0011 0.6123
gp 0.0007 0.0039 1.0000 0.0093 0.0029 0.0155 0.0062 0.0024 0.0850
firmage -0.0264 0.0090 0.0937 -0.0253 0.0089 0.0402 -0.0109 0.0031 0.0061
exchswitch 0.0020 0.0020 1.0000 0.0029 0.0014 0.2880 0.0034 0.0014 0.0907
ep 0.0087 0.0040 0.3896 0.0087 0.0040 0.2228 0.0088 0.0040 0.1953
entmult 0.0064 0.0054 1.0000 0.0096 0.0021 0.0002 0.0088 0.0014 0.0000
ebm 0.0008 0.0015 1.0000 -0.0017 0.0011 0.8715 -0.0010 0.0011 1.0000
divomit -0.0001 0.0032 1.0000 0.0016 0.0023 1.0000 0.0015 0.0023 1.0000
divinit 0.0010 0.0033 1.0000 0.0054 0.0026 0.2880 0.0055 0.0026 0.2578
dellti 0.0003 0.0009 1.0000 0.0008 0.0008 1.0000 0.0010 0.0008 1.0000
delfinl 0.0026 0.0011 0.3896 0.0047 0.0009 0.0000 0.0049 0.0009 0.0000
delequ 0.0016 0.0035 1.0000 0.0023 0.0021 1.0000 0.0008 0.0020 1.0000
delcol -0.0030 0.0022 1.0000 -0.0039 0.0014 0.0638 -0.0039 0.0014 0.0471
delcoa -0.0008 0.0019 1.0000 0.0011 0.0016 1.0000 0.0011 0.0016 1.0000
coskewness 0.0018 0.0025 1.0000 0.0029 0.0016 0.4535 0.0030 0.0016 0.4380
cheq 0.0179 0.0081 0.3896 0.0046 0.0033 0.9121 0.0050 0.0024 0.2407
cboperprof 0.0137 0.0070 0.6002 0.0118 0.0024 0.0000 0.0123 0.0017 0.0000
bpebm 0.0084 0.0030 0.1203 -0.0067 0.0025 0.0654 -0.0071 0.0024 0.0337
bm 0.0059 0.0037 1.0000 0.0034 0.0037 1.0000 0.0097 0.0031 0.0186
bidaskspread -0.0204 0.0065 0.0628 -0.0319 0.0097 0.0140 -0.0265 0.0084 0.0166
betatailrisk -0.0070 0.0072 1.0000 0.0052 0.0046 1.0000 0.0042 0.0036 1.0000
beta -0.0075 0.0084 1.0000 -0.0075 0.0084 1.0000 -0.0075 0.0084 1.0000
am 0.0046 0.0056 1.0000 0.0187 0.0048 0.0015 0.0288 0.0046 0.0000
accruals 0.0045 0.0013 0.0297 0.0040 0.0011 0.0055 0.0039 0.0011 0.0050
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Figure 9: p-values of hypothesis test

This figure illustrates which of the tests yield significant results using the p-values from Table 7. We use different colors for

different significance levels.
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We estimate this model using only the data up until the publication date of the new

candidate predictor, not the full sample. To determine if a characteristic is significant, we

test H0 : βk = 0 using a two-sided t-test. We allow for cross-sectional dependence of the

error terms by using clustered standard errors. Since, we have 40 characteristics in total

and thus perform 40 separate t-tests, we use p-values adjusted for the false discovery rate

to take the multiple testing problem into account (see Benjamini and Yekutieli (2001) and

Green et al. (2017)).4 These p-values might be larger than 1 in which case we set them to 1

4Specifically, let pi denote the standard p-value of the ith test and assume that the p-values have been

ordered, such that p1 ≤ p2 ≤ · · · ≤ p40. The adjusted false discovery rate p-values are p̃40 =
(∑40

i=1(1/i)
)
p40

and p̃i = min
{
p̃i+1,

(∑40
j=1(1/j)

)
(40/i)pi

}
for all i < 40.
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Figure 10: Empirical cdfs of standard errors of new characteristics

This figure shows the empirical distribution function of the standard errors of the estimated coefficients for the three different

methods. Panel (a) shows the standard errors for all new characteristics (i.e. those in Table 7). Panel (b) shows the standard

errors for all estimated coefficients in equation (4) and for each time period.
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when presenting our results. Table 7 shows the estimates, standard errors, and the adjusted

p-values.

Figure 9 illustrates which characteristics have a significant effect on returns. It shows that

we select very few characteristics in the complete case. The efficiency loss is indeed large,

because we discard too much data and thus do not make use of the available information.

Conditional mean imputation using the GLS adjustment selects more characteristics, but still

fewer than the unconditional mean imputation. Most notably the selection of characteristics

between the conditional mean and unconditional mean imputation is quite different. This

is due to the interaction of two effects highlighted in Section 3. First, mean imputation

yields biased estimators and estimated coefficients may be either too larger or too close to 0.

As a specific example, consider the book-to-market ratio (bm) in Table 7. The coefficients

in the complete case and with conditional mean imputation are quite similar (0.0059 and

0.0034, respectively), while unconditional mean imputation yields a much larger estimated

coefficient (0.0097) that is significantly different from 0. Second, with unconditional mean

imputation, we underestimate the covariance between the characteristics and therefore get

artificially small standard errors. To illustrate this difference, Figure 10 shows empirical cdfs

of the standard errors obtained using the different methods. In panel (a), we plot the cdf

for all new characteristics (i.e. for the standard errors in Table 7). Panel (b) shows the cdf

of the standard errors for all estimated coefficients in equation (4) and for each time period.

We can see that the complete case yields the largest standard errors because it only makes

use of a subset of the data, and the standard errors with mean imputation tend to be the

smallest.

6 Conclusion

Missing data occur in virtually all cross-sectional empirical asset pricing studies. The

primary goal of this paper is to provide empirical researchers with an easy approach to

address this problem more systematically. Our proposed approach can be implemented with
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standard statistical packages and is computationally tractable even in high dimensions and

for very large panels.

Our results show that the complete case method, despite its intuitive appeal, neglects

and important part of the return distribution. We therefore advocate the use of imputation.

Moreover, since unconditional mean imputation leads to bias in the estimation and incorrect

inference, we urge researchers not to use it. Instead, researchers should use conditional mean

imputation and adjust for the estimation error in subsequent inference.

The two step approach enjoys broad appeal and can be applied in other common areas of

research such as estimating the stochastic discount factors, illustrated in A.2, characteristic

based factor models, and international studies. These items are left for future research.
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Appendix:
Missing Data in Asset Pricing Panels

Table A.1: Overview of the Characteristics

This Table gives an overview of the characteristic used in the empirical analysis. They are obtained from Chen and Zimmermann

(2021). We refer to their paper and the companion website for the precise construction.

Acronym Description
Publication

Year
Reference % missing

Accruals Accruals 1996 Sloan (1996) 4.26
AM Total assets to market 1992 Fama and French (1992) 0.00
Beta CAPM beta 1973 Fama and MacBeth (1973) 0.00
BetaTailRisk Tail risk beta 2014 Kelly and Jiang (2014) 28.89
BidAskSpread Bid-ask spread 1986 Amihud and Mendelson (1986) 10.29

BM Book to market 1992 Fama and French (1992) 0.00
BMent Enterprise component of BM 2007 Penman et al. (2007) 0.30
BPEBM Leverage component of BM 2007 Penman et al. (2007) 0.30
CBOperProf Cash-based operating profitability 2016 Ball et al. (2016) 15.04
ChBE Sustainable Growth 2010 Lockwood and Prombutr (2010) 4.93

ChBEtoA Change in equity to assets 2005 Richardson et al. (2005) 4.24
ChCOA Change in current operating assets 2005 Richardson et al. (2005) 3.88
ChCol Change in current operating liabilities 2005 Richardson et al. (2005) 4.26
ChFinLiab Change in financial liabilities 2005 Richardson et al. (2005) 4.39
ChLTI Change in long-term investment 2005 Richardson et al. (2005) 3.88

Coskewness Coskewness 2000 Harvey and Siddique (2000) 0.00
DivInit Dividend Initiation 1995 Michaely et al. (1995) 0.00
DivOmit Dividend Omission 1995 Michaely et al. (1995) 0.00
EntMult Enterprise Multiple 2011 Loughran and Wellman (2011) 15.56
EP Earnings-to-Price Ratio 1977 Basu (1977) 24.34

ExchSwitch Exchange Switch 1995 Dharan and Ikenberry (1995) 0.00
FirmAge Firm Age 1984 Barry and Brown (1984) 65.61
GrLTNOA Growth in Long term net operating assets 2003 Fairfield et al. (2003) 4.56
GrossProf gross profits / total assets 2013 Novy-Marx (2013) 15.70
Herf Industry concentration (Herfindahl) 2006 Hou and Robinson (2006) 4.49

High52 52 week high 2004 George and Hwang (2004) 0.00
IdioRisk Idiosyncratic risk 2006 Ang et al. (2006) 0.00
Illiquidity Amihud’s illiquidity 2002 Amihud (2002) 7.45
IndMom Industry Momentum 1999 Moskowitz and Grinblatt (1999) 0.00
InterMom Intermediate Momentum 2012 Novy-Marx (2012) 0.00

Leverage Market leverage 1988 Bhandari (1988) 0.00
MaxRet Maximum return over month 2011 Bali et al. (2011) 0.00
Mom12m Momentum (12 month) 1993 Jegadeesh and Titman (1993) 0.00
Mom1m Short term reversal 1990 Jegadeesh and Titman (1993) 0.00
Mom6m Momentum (6 month) 1993 Jegadeesh and Titman (1993) 0.00

NetDebtPrice Net debt to price 2007 Penman et al. (2007) 51.79
NOA Net Operating Assets 2004 Hirshleifer et al. (2004) 3.97
OperLeverage Operating Leverage 2011 Novy-Marx (2011) 0.00
Size Market value of equity 1981 Banz (1981) 0.00
ZeroTrade Days with zero trades 2006 Liu (2006) 6.70

1

Electronic copy available at: https://ssrn.com/abstract=3932438

https://www.openassetpricing.com


A.1 Additional Definitions

We briefly recall some basic notions relevant to missing data treatment. Introductory treatments

can be found for example in Little and Rubin (2020), Fitzmaurice et al. (2015).

A.1.1 Missing patterns

A missing pattern describes which data are missing. Figure 1 shows examples of missing pat-

terns. In our application, we cannot assume that we are confronted with a particular missing

pattern, and instead deal with general missing patterns. Our theoretical results require a non-

negligible part of the data to be complete. Generalizing these results would require much stronger

assumptions and does not occur in our empirical application.

A.1.2 Missing mechanisms

The missing mechanism describes why data are missing, i.e. it describes the relationship be-

tween the missingness and the values of the observed (and possibly unobserved) variables. Rubin

(1976) introduces three formal definitions for missing mechanisms that have become standard in the

literature. He differentiates between missing completely at random (MCAR), missing at random

(MAR) and not missing at random (NMAR). We recall these basic definitions, using our notation

from Section 2 below.

In Section 2 (and with only cross-sectional data) the missing pattern of observation i is denoted

by Di. The outcome is Yi and the regressors are Xi. Let X
(o)
i be the subset of Xi that is observed

under all missing patterns. Let Vi be a vector of observed additional characteristics (as in section

2.3.2). We refer to the analysis based on the cases that are completely observed as the complete case

analysis. This is in contrast to the “complete data analysis” which is based on the hypothetically

observed data in the absence of any missing data.

The data is MCAR if Di ⊥⊥ Yi, Xi, Vi, i.e. whether an observation is missing does not depend

on the other variables. When the data is MCAR, the complete case analysis yields valid inference,

but there is a loss of efficiency relative to the complete data analysis due to the decreased sample

size (Fitzmaurice et al. (2015)).
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The data is MAR1 if Di ⊥⊥ Yi, Xi | X(o)
i , Vi. That is, missing is only random once we condi-

tion on observed covariates. We rely on this type of assumption (but based solely on conditional

moments) in our analysis. When the data is MAR, the complete case analysis generally yields

valid inference, but might require an estimator based on inverse propensity weighting (as in section

2.3.2). Again, neglecting a part of the sample results in an inefficient estimator.

Data is NMAR, sometimes also referred to as missing not at random, if Di depends on un-

observed regressors or the outcome. In this case, the missing data mechanism cannot be ignored.

One approach could then be to model it explicitly as in selection models (Heckman (1979)) or

pattern-mixture models (Little (1994)). Alternatively, one could use a partial identification ap-

proach (Manski (2005)).

A.2 Extensions

A.2.1 Stochastic Discount Factor Estimation

In this section we briefly explain how our proposed method can be used to estimate the stochastic

discount factor when covariates might be missing. We start with the standard moment condition

E
[
Mt+1R

e
it+1 | Xit

]
= 0

for all i = 1, 2, . . . , n and t = 1, . . . , T , where Mt+1 is the stochastic discount factor, Reit+1 are

excess returns, and Xit are variables known at time t. The discount factor is a linear combination

of the excess returns and we assume that the weights are a parametric function of Xit ∈ RK . That

is

Mt+1 = 1−
n∑
j=1

ω (Xjt, β)Ret+1,j

where

ω (Xjt, β) =
K∑
k=1

βkXjt,k.

1MCAR is a special case of MAR.
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Combining the previous three equations we get

E

1−
n∑
j=1

(
K∑
k=1

βkXjt,k

)
Rejt+1

Reit+1 | Xit

 = 0

As before, assume we have L missing patterns. Let Dit = l for missing pattern l, and let X
(l)
it,k be

the corresponding subset of observed element of Xit. Then, under an analogous MAR assumption

as before,

0 = E

1−
n∑
j=1

(
K∑
k=1

βkXjt,k

)
Rejt+1

Reit+1 | X
(l)
it


= E

1−
n∑
j=1

(
K∑
k=1

βkXjt,k

)
Rejt+1

Reit+1 | X
(l)
it , Dit = l


= E

Reit+1 −
n∑
j=1

(
K∑
k=1

βkXjt,kR
e
jt+1R

e
it+1

)
| X(l)

it , Dit = l


For k such that Xjt,k ⊆ X

(l)
jt , let

Z
(l)
it,jk =


Xjt,kR

e
jt+1R

e
it+1 if k ∈ I(l)

t

E[Xjt,kR
e
jt+1R

e
it+1 | X

(l)
it , Dit = 0] if k /∈ I(l)

t

Assuming that

E[Xjt,kR
e
jt+1R

e
it+1 | X

(l)
it , Dit = l] = E[Xjt,kR

e
jt+1R

e
it+1 | X

(l)
it , Dit = 0]

we obtain the conditional moment restrictions

E

Reit+1 −
n∑
j=1

(
K∑
k=1

βkZ
(l)
jt,t

)
| X(l)

it , Dit = l

 = 0

To impute missing values, let

E[Xjt,kR
e
jt+1R

e
it+1 | X

(l)
it , Dit = 0] = h

(
X

(l)
it , γ

(l,k)
)
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where h is a flexible parametric function of X
(l)
it with parameter vector γ(l,k). Finally, let g(X

(l)
it ) be

a vector of transformations of X
(l)
it . We can then estimate the parameters based on the following

unconditional moments:

E

1(Dit = 0)

Reit+1 −
n∑
j=1

(
K∑
k=1

βkXjt,kR
e
jt+1R

e
it+1

) g(X
(l)
it )

 = 0 (A.1)

E

1(Dit = l)

Reit+1 −
n∑
j=1

(
K∑
k=1

βkZ
(l)
it,jk

) g(X
(l)
it )

 = 0 l = 1, . . . , L (A.2)

E
[
1(Dit = 0)

(
Xjt,kR

e
jt+1R

e
it+1 − h

(
X

(l)
it , γ

(l,k)
))

g(X
(l)
it )
]

= 0 l = 1, . . . , L (A.3)

k /∈ I(l)
t

A.2.2 Derivation with additional covariates

Consider the simple model

Yi = β0 +Xi,1β1 +Xi,2β2 + εi,

where Xi,1 is a always observed, but Xi,2 might be missing. Let Di = 0 if observation i is com-

plete and let Di = 1 if Xi,2 is missing. We now derive moment conditions under the conditional

independence assumption

Di ⊥⊥ Yi, Xi,2 | Xi,1, Vi

where Vi is a observed covariate. In this case, we get

0 = E [εi | Xi,1, Xi,2]

= E [E [εi | Xi,1, Xi,2, Vi] | Xi,1, Xi,2]

= E [E [εi | Xi,1, Xi,2, Vi, Di = 0] | Xi,1, Xi,2]

= E

[
E [1(Di = 0)εi | Xi,1, Xi,2, Vi]

1

P (Di = 0 | Xi,1, Xi,2, Vi)
| Xi,1, Xi,2

]
= E

[
E [1(Di = 0)εi | Xi,1, Xi,2, Vi]

1

P (Di = 0 | Xi,1, Vi)
| Xi,1, Xi,2

]
= E

[
1

P (Di = 0 | Xi,1, Vi)
1(Di = 0)εi | Xi,1, Xi,2

]
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= E

[
1

P (Di = 0 | Xi,1, Vi)
1(Di = 0)(Yi − β0 −Xi,1β1 −Xi,2β2) | Xi,1, Xi,2

]

Similarly, it can shown that

E

[
1

P (Di = 1 | Xi,1, Vi)
1(Di = 1) (Yi − β0 −Xi,1β1 − E[Xi,2 | Xi,1, Vi, Di = 0]β2) | Xi,1

]
= 0

We then have a similar structure as before because we can impute Xi,2 with an estimate of E[Xi,2 |

Xi,1, Vi, Di = 0] and use an inverse probability weighted estimator with an estimate of the nuisance

functions are P (Di = 0 | Xi,1, Vi).

This previous approach does not require an assumption on how Vi relates to εi. Now suppose

we also assume that

E[εi | Xi, Vi] = 0

Using the previous arguments, it is easy to derive the unconditional moments

E [(Yi − β0 −Xi,1β1 −Xi,2β2) | Xi,1, Xi,2, Vi, Di = 0] = 0

and

E [(Yi − β0 −Xi,1β1 − E[Xi,2 | Xi,1, Vi, Di = 0]β2) | Xi,1, Vi, Di = 1] = 0

A.3 Projection

We now briefly discuss how to allow for E
[
Xit,k|X

(l)
it , Dit = l

]
6= X

(l)′
it γ

(l,k)
t by using arguments

based on projections. In this case Z
(l)
it,k = X

(l)′
it γ

(l,k)
t can be interpreted as the linear projection of

Xit,k onto X
(l)
it under missing pattern l, based on the complete subset of the data. By definition of

a linear projections, it then holds that

E
[
1(Dit = 0)u

(l)
it,kX

(l)
it

]
= 0

for all l = 0, 1, . . . , L and k 6∈ I(l)
t and with u

(l)
it,k = Xit,k − Z

(l)
it,k. These are exactly the moment

condition in equation (3). The moment conditions in equation (1) hold as long as E[εit | X(0)
it , Dit =

6
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0] = 0, which follows from our previously imposed MAR assumption. Finally, for the moment

conditions in equation (2), we can use our assumption E[εit | X(l)
it , Dit = 0] = 0 to write

E

[
1(Dit = l)(Yit −

K∑
k=1

βt,kZ
(l)
it,k)X

(l)
it

]
= E

[
1(Dit = l)

(
εit +

K∑
k=1

βt,ku
(l)
it,k

)
X

(l)
it

]

=

K∑
k=1

βt,kE
[
1(Dit = l)u

(l)
it,kX

(l)
it

]

Hence, the moment conditions hold as longs as

E
[
1(Dit = l)u

(l)
it,kX

(l)
it

]
= 0

for all l = 0, 1, . . . , L, which we can also write as

E
[
1(Dit = l)u

(l)
it,kX

(l)
it

]
=
[
1(Dit = 0)u

(l)
it,kX

(l)
it

]

This equation holds as long the linear projection of Xit,k on X
(l)
it does not depend on Dit, which is

analogous to the second part of the previous MAR assumption, namely

E
[
Xit,k | X

(l)
it , Dit = l

]
= E

[
Xit,k | X

(l)
it , Dit = 0

]
.

A.4 Equivalence GLS and Optimal GMM

Consider the moment conditions

E

[
1(Dit = 0)

(
Yit −

K∑
k=1

βt,kX
(0)
it,k

)
X

(0)
it

]
= 0 (A.4)

E

[
1(Dit = l)

(
Yit −

K∑
k=1

βt,kZ
(l)
it,k

)
X

(l)
it

]
= 0 l = 1, . . . , L (A.5)

E
[
1(Dit = 0)

(
Xit,k −X

(l)
it

′
γ

(l,k)
t

)
X

(l)
it

]
= 0 l = 1, . . . , L and k /∈ I(l)

t (A.6)

To show equivalence of the GLS and the optimal GMM estimator, we impose the following addi-

tional assumptions:

7
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• γt is known.

• E
[
ε2
it | X0

it, Di = l
]

= σ2
ε,t

• E
[
u

(l)
it u

(l)
it

′
| X(l)

it , Dit = l
]

= Σ
(l)
t for all l = 1, . . . L, where u

(l)
it,k = Xit,k − X

(l)
it

′
γ

(l,k)
t for all

k /∈ I(l)
t .

As mentioned before, as assume that γt is known. The last two conditions assume that the unob-

servables are homoskedastic.

We start by analyzing the GMM estimator. Since γt is known, we can ignore the moment

conditions in (A.6). Now define

git(βt) =



1(Dit = 0)
(
Yit −

∑K
k=1 βt,kX

(0)
it,k

)
X

(0)
it

1(Dit = 1)
(
Yit −

∑K
k=1 βt,kZ

(1)
it,k

)
X

(1)
it

...

1(Dit = L)
(
Yit −

∑K
k=1 βt,kZ

(L)
it,k

)
X

(L)
it


The GMM estimator minimizes the sample analog of E[git(βt)]

′WE[git(βt)]. The efficient matrix

is the block-diagonal matrix

W = E[git(βt)git(βt)
′]−1

= diag
(
w(l)

)−1

where w(l) is the dim(X
(l)
it )× dim(X

(l)
it ) matrix

w(l) = E

1(Dit = l)X
(l)
it X

(l)
it

′
(
Yit −

K∑
k=1

βt,kZ
(l)
it,k

)2


The remaining element are zero because 1(Dit = k)1(Dit = l) = 0 for k 6= l. The first diagonal

block, w(0), can be expressed as

w(0) = E
[
1(Dit = 0)X

(0)
it X

(0)
it

′
ε2
it

]
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Using E
[
ε2
it | X

(0)
it , Di = 0

]
= σ2

ε,t we can write it as

E
[
1(Dit = 0)X

(0)
it X

(0)
it

′
ε2
it

]
= σ2

ε,tE
[
1(Dit = 0)X

(0)
it X

(0)
it

′]

For the other blocks, we can write

w(l) = E

1(Dit = l)X
(l)
it X

(l)
it

′
(
Yit −

K∑
k=1

βt,kZ
(l)
it,k

)2


= E

1(Dit = l)X
(l)
it X

(l)
it

′
(
εit +

K∑
k=1

βt,ku
(l)
it,k

)2


Let β
(l)
t be the subvector of βt,k with k 6∈ I(l)

t . Our assumptions above then imply that

E

(εit +
K∑
k=1

βt,ku
(l)
it,k

)2

| X(l)
it , Dit = l

 = E
[
ε2
it | X

(l)
it , Dit = l

]

+ 2E

[
εit

(
K∑
k=1

βt,ku
(l)
it,k

)
| X(l)

it , Dit = l

]

+ E

( K∑
k=1

βt,ku
(l)
it,k

)2

| X(l)
it , Dit = l


= σ2

ε,t + β
(l)
t

′
Σ

(l)
t β

(l)
t

The cross terms are 0 because

E

[
εit

(
K∑
k=1

βt,ku
(l)
it,k

)
| X(l)

it , Dit = l

]
=

K∑
k=1

βt,kE
[
u

(l)
it,kE (εit | Xit, Dit = l) | Xit, Dit = l

]
= 0

It then follows that

w(l) =
(
σ2
ε,t + β

(l)
t

′
Σ

(l)
t β

(l)
t

)
E
[
1(Dit = l)X

(l)
it X

(l)
it

′]

for l = 1, . . . , L.

The feasible optimal GMM estimator minimizes ḡ(βt)
′Ŵ ḡ(βt) where ḡ(β) = 1

n

∑n
i=1 git(β) and
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Ŵ = diag
(
ŵ(l)

)−1
with

ŵ(0) = σ̂2
ε,t

1

n

n∑
i=1

1(Dit = 0)X
(0)
it X

(0)
it

′

ŵ(l) =

(
σ̂2
ε,t +

(
β̂

(l)
t

)′
Σ̂

(l)
t β̂

(l)
t

)
1

n

n∑
i=1

1(Dit = l)X
(l)
it X

(l)
it

′

We require that σ̂2
ε,t

p−→ σ2
ε,t, β̂

(l)
t

p−→ β
(l)
t and Σ̂

(l)
t

p−→ Σ
(l)
t , which can be achieved by estimating the

parameters using the complete case. We then get Ŵ
p−→W .

The first-order conditions are

∂

∂βt
ḡ(βt)

′Ŵ ḡ(βt) = 0

with

∂

∂βt
ḡ(βt) =



− 1
n

∑n
i=1 1(Dit = 0)X

(0)
it X

(0)
it

′

− 1
n

∑n
i=1 1(Dit = 1)X

(1)
it Z

(1)
it

′

...

− 1
n

∑n
i=1 1(Dit = L)X

(L)
it Z

(L)
it

′



Solving the first order conditions yields the following closed-form expression for the optimal GMM

estimator:

β̂t,GMM =

(
∂

∂βt
ḡ(Vit, β̂t)

′Ŵ
∂

∂βt
ḡ(βt)

)−1 ∂

∂βt
ḡ(Vit, β̂t)

′Ŵ
1

n

n∑
i=1



1(Dit = 0)X
(0)
it Yit

1(Dit = 1)X
(1)
it Yit

...

1(Dit = L)X
(L)
it Yit


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We will now rewrite this estimator to relate it to the GLS estimator. Consider

(
∂

∂βt
ḡ(Vit, β̂t)

′Ŵ

)′
=



− 1
n

∑n
i=1 1(Dit = 0)X

(0)
it X

(0)
it

′ (
ŵ(0)

)−1

− 1
n

∑n
i=1 1(Dit = 1)Z

(1)
it X

(1)
it

′ (
ŵ(1)

)−1

...

− 1
n

∑n
i=1 1(Dit = L)Z

(L)
it X

(L)
it

′ (
ŵ(L)

)−1



′

The first element is simply

− 1

n

n∑
i=1

1(Dit = 0)X
(0)
it X

(0)
it

′ (
ŵ(0)

)−1
= −

(
σ̂2
ε,t

)−1
IK×K

Next, we assume without loss of generality that the elements in Z
(l)
it are ordered such that Z

(l)
it =(

X
(l)
it

′
, X

(l)
it

′
γ

(l)
t

′)′
. Define J

(l)
t =

∣∣(I(l)
t )c

∣∣. Then for the l-th element

− 1

n

n∑
i=1

1(Dit = l)Z
(l)
it X

(l)
it

′ (
ŵ(l)

)−1
= − 1

n

n∑
i=1

1(Dit = l)

 X
(l)
it

γ
(l)
t X

(l)
it

X
(l)
it

′ (
ŵ(l)

)−1

= −

I(K−J(l)
t )×(K−J(l)

t )

γ
(l)
t

 1

n

n∑
i=1

1(Dit = l)X
(l)
it X

(l)
it

′ (
ŵ(l)

)−1

= −
(
σ̂2
ε,t +

(
β̂

(l)
t

)′
Σ̂

(l)
t β̂

(l)
t

)−1

I(K−J(l)
t )×(K−J(l)

t )

γ
(l)
t


It follows that

∂

∂βt
ḡ(Vit, β̂t)

′Ŵ
∂

∂βt
ḡ(βt) = − 1

n

n∑
i=1

1(Dit = 0)Z
(0)
it Z

(0)
it

′

σ̂2
ε,t

+
L∑
l=1

1(Dit = l)Z
(l)
it Z

(l)
it

′

σ̂2
ε,t +

(
β̂

(l)
t

)′
Σ̂

(l)
t β̂

(l)
t


where X

(0)
it = Z

(0)
it . Define

(σ̂
(l)
t )2 :=


σ̂2
ε,t if l = 0

σ̂2
ε,t +

(
β̂

(l)
t

)′
Σ̂

(l)
t β̂

(l)
t otherwise
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Then

∂

∂βt
ḡ(Vit, β̂t)

′Ŵ
∂

∂βt
ḡ(βt) = − 1

n

n∑
i=1

L∑
l=0

1(Dit = l)
Z

(l)
it Z

(l)
it

′

(σ̂
(l)
t )2

Using the same arguments we can also write

Ŵ
1

n

n∑
i=1



1(Dit = 0)X
(0)
it Yit

1(Dit = 1)X
(1)
it Yit

...

1(Dit = L)X
(L)
it Yit


= − 1

n

n∑
i=1

L∑
l=0

1(Dit = l)
Z

(l)
it Yit

(σ̂
(l)
t )2

Hence

β̂t,GMM =

(
n∑
i=1

L∑
l=0

1(Dit = l)
Z

(l)
it Z

(l)
it

′

(σ̂
(l)
t )2

)−1 n∑
i=1

L∑
l=0

1(Dit = l)
Z

(l)
it Yit

(σ̂
(l)
t )2

Next, consider the GLS estimator, which minimizes

1

n

n∑
i=1

L∑
l=0

1(Dit = l)
(Yit − Z(l)

it

′
βt)

2

(σ̂
(l)
t )2

The first-order conditions are

0 =
n∑
i=1

L∑
l=0

1(Dit = l)
Z

(l)
it Yit − Z

(l)
it Z

(l)
it

′
β̂t,GLS

(σ̂
(l)
t )2

⇔ β̂t,GLS =

(
n∑
i=1

L∑
l=0

1(Dit = l)
Z

(l)
it Z

(l)
it

′

(σ̂
(l)
t )2

)−1 n∑
i=1

L∑
l=0

1(Dit = l)
Z

(l)
it Yit

(σ̂
(l)
t )2

Therefore

β̂t,GMM = β̂t,GLS .
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A.5 Large Sample Distribution

Let γt = {γ(l,k)
t }

l=1,...,L,k/∈I(l)t
and define

git,1 (βt, γt) =



1(Dit = 0)
(
Yit −

∑K
k=1 βt,kX

(0)
it

)
X

(0)
it

1(Dit = 1)
(
Yit −

∑K
k=1 βt,kZ

(1)
it,k

)
X

(1)
it

...

1(Dit = L)
(
Yit −

∑K
k=1 βt,kZ

(L)
it,k

)
X

(L)
it


and

git,2 (γt) =


{
1(Dit = 0)

(
Xit,k −X

(1)
it

′
γ

(1,k)
t

)
X

(1)
it

}
k/∈I(1)t

...{
1(Dit = 0)

(
Xit,k −X

(L)
it

′
γ

(L,k)
t

)
X

(L)
it

}
k/∈I(L)

t


We will derive the large sample distribution of any GMM estimator which minimizes a sample

analog estimator of

(
E[git,1 (βt, γt)] E[git,2 (γt)]

)W1 0

0 W2

E[git,1 (βt, γt)]

E[git,2 (γt)]


We then show that both the two-step OLS and GLS estimators are special cases for particular

choices of W1 and W2. In particular, we will take W2 = 1
w2
Idim(git,2)×dim(git,2), w2 → 0, and

Idim(git,2)×dim(git,2) is an identity matrix. Intuitively, we put infinite weight on the second set of

moment conditions, which implies that we solve the sample analog exactly. We show that the limit

is well defined and derive an expression for the corresponding standard errors.

Define

ḡ1 (βt, γt) =
1

n

n∑
i=1

git,1 (βt, γt)

and

ḡ2 (γt) =
1

n

n∑
i=1

git,2 (γt)

The objective function is then

ḡ1 (βt, γt)
′W1ḡ1 (βt, γt) + ḡ2 (γt)

′W2ḡ2 (γt)
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and the first order conditions are

(
∂

∂βt
ḡ1

(
β̂t, γ̂t

))′
W1ḡ1

(
β̂t, γ̂t

)
= 0

and (
∂

∂γt
ḡ1

(
β̂t, γ̂t

))′
W1ḡ1

(
β̂t, γ̂t

)
+

(
∂

∂γt
ḡ2 (γ̂t)

)′
W2ḡ2 (γ̂t) = 0

Using W2 = 1
w2
Idim(git,2)×dim(git,2), we can then write the first order condition as


(

∂
∂βt

ḡ1

(
β̂t, γ̂t

))′
W1 0

w2

(
∂
∂γt
ḡ1

(
β̂t, γ̂t

))′
W1

(
∂
∂γt
ḡ2 (γ̂t)

)′

ḡ1

(
β̂t, γ̂t

)
ḡ2 (γ̂t)

 = 0

Notice that when w2 = 0, these are the first order conditions corresponding to the two-step GLS

estimator, which we derived in Section A.4 where W1 = diag
(
ŵ(l)

)−1
and expressions for ŵ(l) are

provided in Section A.4. We obtain the two-step OLS estimator when W1 is an identity matrix.

Using a first-order Taylor expansion, we get

0 =


(

∂
∂βt

ḡ1

(
β̂t, γ̂t

))′
W1 0

w2

(
∂
∂γt
ḡ1

(
β̂t, γ̂t

))′
W1

(
∂
∂γt
ḡ2 (γ̂t)

)′

ḡ1 (βt, γt)

ḡ2 (γt)



+


(

∂
∂βt

ḡ1

(
β̂t, γ̂t

))′
W1 0

w2

(
∂
∂γt
ḡ1

(
β̂t, γ̂t

))′
W1

(
∂
∂γt
ḡ2 (γ̂t)

)′

 ∂
∂βt

ḡ1

(
β̂t, γ̂t

)
∂
∂γt
ḡ1

(
β̂t, γ̂t

)
0 ∂

∂γt
ḡ2 (γ̂t)


β̂ − β
γ̂ − γ


+ op(1/

√
n)

or

√
n

β̂t − βt
γ̂t − γt

 =

−

(

∂
∂βt

ḡ1

(
β̂t, γ̂t

))′
W1 0

w2

(
∂
∂γt
ḡ1

(
β̂t, γ̂t

))′
W1

(
∂
∂γt
ḡ2 (γ̂t)

)′

 ∂
∂βt

ḡ1

(
β̂t, γ̂t

)
∂
∂γt
ḡ1

(
β̂t, γ̂t

)
0 ∂

∂γt
ḡ2 (γ̂t)



−1

×


(

∂
∂βt

ḡ1

(
β̂t, γ̂t

))′
W1 0

w2

(
∂
∂γt
ḡ1

(
β̂t, γ̂t

))′
W1

(
∂
∂γt
ḡ2 (γ̂t)

)′
√n

 ḡ1 (βt, γt)

ḡ2 (γt) + op(1)


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We know that

√
n

ḡ1 (βt, γt)

ḡ2 (γt)

 d→ N(0,Ωt)

where

Ωt = E

git,1 (βt, γt)

git,2 (γt)

(git,1 (βt, γt) git,2 (γt)

)
and thus

√
n

β̂t − βt
γ̂t − γt

 d→ N(0,Σt)

where

Σt =
(
D′tQt

)−1
D′tΩtDt

(
Q′tDt

)−1

where

D′t =


(

∂
∂βt

E[g1 (Vit, βt, γt)]
)′
W1 0

w2

(
∂
∂γt
E[g1 (Vit, βt, γt)]

)′
W1

(
∂
∂γt
E[g2 (Vit, γt)]

)′


and

Qt =

 ∂
∂βt

E[g1 (Vit, βt, γt)]
∂
∂γt
E[g1 (Vit, βt, γt)]

0 ∂
∂γt
E[g2 (Vit, γt)]


All these matrix can be estimated using sample analogs. As already mentioned, for the two-step

GLS estimator, we simply set w2 = 0 and use W1 as defined above.

A.6 J-test

Let γt = {γ(l,k)
t }

l=1,...,L,k/∈I(l)t
and define

git,11 (βt) =

(
1(Dit = 0)

(
Yit −

∑K
k=1 βt,kX

(0)
it

)
X

(0)
it

)

git,12 (βt, γt) =


1(Dit = 1)

(
Yit −

∑K
k=1 βt,kZ

(1)
it,k

)
X

(1)
it

...

1(Dit = L)
(
Yit −

∑K
k=1 βt,kZ

(L)
it,k

)
X

(L)
it


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and

git,2 (γt) =


{
1(Dit = 0)

(
Xit,k −X

(1)
it

′
γ

(1,k)
t

)
X

(1)
it

}
k/∈I(1)t

...{
1(Dit = 0)

(
Xit,k −X

(L)
it

′
γ

(L,k)
t

)
X

(L)
it

}
k/∈I(L)

t


Let β̂t be the estimator that solves

n∑
i=1

git,11

(
β̂t

)
= 0

which is our estimator based on the complete case. Let γ̂t be the estimator that solves

n∑
i=1

git,2 (γ̂t) = 0

which is our standard, period-by-period imputation estimator.

To test our overidentifying restrictions, we test

H0 : E[git,12 (βt, γt)] = 0

for the values of βt and γt that are identified through the first and third set of moments, respectively.

The test statistic will be a quadratic version of the sample analog of these moment conditions.

To derive the test statistic, let δt = (βt, γt) and write

1

n

n∑
i=1

git,12

(
δ̂t

)
=

1

n

n∑
i=1

git,12 (δt) +
1

n

n∑
i=1

(
git,12

(
δ̂t

)
− git,12 (δt)

)
=

1

n

n∑
i=1

git,12 (δt) +

(
1

n

n∑
i=1

∂

∂δ
git,21 (δt)

)(
δ̂t − δt

)
+ op(1/

√
n).

Hence,

1√
n

n∑
i=1

git,12

(
δ̂t

)
≈ 1√

n

n∑
i=1

git,12 (δt) +

(
1

n

n∑
i=1

∂

∂δ
git,12 (δt)

)
√
n
(
δ̂t − δt

)
+ op(1).

Under the null hypothesis it holds that

1√
n

n∑
i=1

git,12 (δt)
d→ N(0, E[git,12 (δt) git,12 (δt)

′])
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For the second term, it is easy to show that we can write

√
n
(
δ̂t − δt

)
=


(

1
n

∑n
i=1

∂
∂β git,11 (βt)

)−1
1√
n

∑n
i=1 git,11 (βt)(

1
n

∑n
i=1

∂
∂γ git,2 (γt)

)−1
1√
n

∑n
i=1 git,2 (γt)


= G−1

t

1√
n

n∑
i=1

 git,11 (βt)

git,2 (γt) + op(1)


where

Gt =

E
[
∂
∂β git,11 (βt)

]
0

0 E
[
∂
∂β git,2 (γt)

]


Hence
√
n
(
δ̂t − δt

)
d→ N(0,Σt)

where

Σt = G−1
t E


git,11 (βt)

git,2 (γt)

git,11 (βt)

git,2 (γt)

′
 (G′t)

−1

It follows that

(
1

n

n∑
i=1

∂

∂δ
git,12 (δt)

)
√
n
(
δ̂t − δt

)
d→ N

(
0, E

[
∂

∂δ
git,12 (δt)

]
ΣtE

[
∂

∂δ
git,12 (δt)

′
])

The two normals are independent because they are based on different subsets of the data.

Hence,

1√
n

n∑
i=1

git,12

(
δ̂t

)
d→ N

(
0, E[git,12 (δt) git,12 (δt)

′] + E

[
∂

∂δ
git,12 (δt)

]
ΣtE

[
∂

∂δ
git,12 (δt)

′
])

Let Ω̂t be a consistent estimator of E[git,12 (δt) git,12 (δt)
′]+E

[
∂
∂δgit,12 (δt)

]
ΣtE

[
∂
∂δgit,12 (δt)

′]. Then

(
1√
n

n∑
i=1

git,12

(
δ̂t

))′
Ω̂−1
t

(
1√
n

n∑
i=1

git,12

(
δ̂t

))
d→ χ2

d12
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where d12 is the dimension of git,12 (δt). We therefore reject the null hypothesis if

(
1√
n

n∑
i=1

git,12

(
δ̂t

))′
Ω̂−1
t

(
1√
n

n∑
i=1

git,12

(
δ̂t

))

is larger than the 1− α quantile of the χ2
d12

distribution.
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