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Abstract
Our experiments investigate the extent to which traders learn from the

price, differentiating between situations where orders are submitted before
versus after the price has realized. In simultaneous markets with bids that
are conditional on the price, traders neglect the information conveyed by
the hypothetical value of the price. In sequential markets where the price
is known prior to the bid submission, traders react to price to an extent
that is roughly consistent with the benchmark theory. The difference’s
robustness to a number of variations provides insights about the drivers
of this effect. (JEL D82, D81, C91)

1 Introduction
Market prices reflect much information about fundamental values. The extent
to which traders utilize this information has important welfare consequences
but is difficult to measure as one often lacks control of the traders’ restrictions,
beliefs and preferences. One possibility to detect a bias in price inference is to
modify the informational environment in a way that is irrelevant for rational
traders. If trading reacts to a framing variation that is uninformative under
rational expectations, the latter assumption is questionable. We focus on an
important dimension of variability between markets, the conditionality of price.
In simultaneous markets, the price realization is unknown to the traders at
the time when they make their decisions—examples are financial markets with
limit orders or other supply/demand function regimes. Theoretically, traders
would incorporate the information of each possible price into their bids, as in
the Rational Expectations Equilibrium prediction by Grossman (1976), inter
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alia. But the price information is hypothetical and traders may find it hard
to make the correct inference in hypothetical conditions. A host of evidence
on Winner’s Curse and other economic decision biases is consistent with this
conjecture, as is the psychological evidence on accessibility (Kahneman, 2003)
and contingent thinking (Evans, 2007).1 Simultaneous asset markets with price-
taking agents are a relevant case in point for such failures of contingent thinking;
one that has not previously been researched, to our knowledge. In contrast,
sequential markets—e.g. many quote-based markets and sequential auctions—
have the traders know the price at which they can complete their trades. Here,
it may still be nontrivial to learn from the price; but both the psychological
research on contingent reasoning and the related economic experiments that
include treatment variations where simultaneity is switched on and off (Carrillo
and Palfrey 2011, Esponda and Vespa 2014; 2019 and Li 2017) suggest that the
task is more accessible in a sequential trading mechanism than in a simultaneous
one.

Juxtaposing simultaneous and sequential mechanisms allows two insights.
First, it provides a clean identification of naive decisions that are due to the
necessity of forming price-contingent strategies. The failure of contingent rea-
soning is shown to be outcome relevant.2 Second, it helps assessing how retail
investors in real-world markets react to the market structure. Retail investors
are more likely to suffer from cognitive biases than institutional investors (see
Skiba and Skiba, 2017, for a review) and regulations of retail trading need to
assess potential drivers of investors’ welfare, including behavioral biases.3 To
the extent that behavior deviates from perfect rationality, a behavioral exper-
iment can complement theoretical considerations in this regard. While a clear
distinction between pure simultaneous and sequential markets does not exist
in the real world, some market structures have clear features of sequentiality,
and others of simultaneity. A prominent example of the latter are order-driven
markets, especially those with call auctions, which require investors to sup-
ply liquidity without knowledge of liquidity demand (Malinova and Park, 2013;
Comerton-Forde et al., 2016). For instance, equity markets with low liquidity
may be cleared throughout the day with periodically conducted call auctions;
other markets open or close the day’s trading via call auctions. More generally,
and even for continuously traded assets, the increasing market fragmentation
and the increasing speed of trades force (slow) retail investors to post orders
without precise knowledge of transaction prices, requiring contingent thinking.4

The stylized dichotomy in trading mechanisms has led to an extensive dis-
cussion of the efficiency of simultaneous versus sequential mechanisms. The
discussion’s emphasis lies, however, on information aggregation, i.e., the reflec-

1Experiments analyzing the Winner’s Curse include, for example, Bazerman and Samuelson
(1983); Kagel and Levin (1986); Kagel, Levin, Battalio, and Meyer (1989). For a thorough
review on the Winner’s Curse literature see Kagel and Levin (2009).

2We differentiate between naiveté, which is defined in Section 3 as the confusion of condi-
tional with unconditional expectations, and failure of contingent reasoning—a possible source
of naiveté. Naiveté may more generally be present to some extent, but our treatment exposes
the scope of suboptimal inferences caused by a failure of contingent reasoning.

3As we discuss below, such an assessment may differentiate between these biases’ effect on
the investors who suffer from the bias and the resulting mis-pricing effect on other investors.

4In line with the difficulty in using price-contingent strategies, Linnainmaa (2010) relates
suboptimal trading patterns of retail investors, such as contrarian trades and the disposition
effect, to the use of limit orders.
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tion of dispersed information in the price, rather than signal extraction, i.e.,
the inference by traders who observe the price.5 Importantly, incomplete signal
extraction may also influence the speed of price discovery when new information
flows into the market. The literature has noted that prices in real and experi-
mental call markets adjust relatively slowly to incoming information (Amihud
et al., 1997; Theissen, 2000). As we explain below, our evidence identifies the
failure of contingent reasoning as a possible explanation also of this pattern.

Our experimental participants trade a single, risky, common-value asset. To
trade optimally, a participant considers two pieces of information: her private
signal and the information conveyed by the asset price. The latter is informative
because it is influenced by the trading activity of another market participant who
has additional information about the asset value. To manipulate the accessibility
of the price information, we perform the experiment in two main treatments,
simultaneous (SIM) versus sequential (SEQ). In treatment SIM, participants
receive a private signal and submit a limit order. If the market price realizes
below the limit, the trader buys one unit of the asset, otherwise she sells one
unit.6 Despite the fact that the price has not yet realized, SIM traders would
optimally infer the extent to which a high price indicates a high value and,
thus, soften the demand’s downward reaction to a higher price, relative to the
case that the price is uninformative. The possibility that traders may fail to
learn from hypothetical prices is examined by comparing to the treatment with
sequential markets, SEQ, where the price is known when traders choose to buy
or sell. Contingent reasoning is not necessary here but treatments SIM and SEQ
are nevertheless equivalent: they have isomorphic strategy sets and isomorphic
mappings from strategies to payoffs.

Section 2 presents the experimental design in detail and Section 3 discusses
our behavioral hypotheses. We present three benchmark predictions for compar-
ison with the data: first, full naiveté, where the trader learns nothing from the
price; second, the Bayes-Nash prediction, where a trader assumes that previous
trades are fully rational and accounts for it; and third, the empirical best re-
sponse that takes into account the actual distribution of previous trades, which
may deviate from optimality. We use the latter as our main benchmark for opti-
mality as it maximizes the traders’ expected payments. That is, we measure the
extent to which naiveté fits the data better than the empirical best response,
separately by treatment.

The data analysis of Section 4 shows that the participants’ inference of infor-
mation from the price varies substantially between simultaneous versus sequen-
tial markets. In SIM, participants often follow the prediction of the naive model,
thus showing ignorance of the information contained in the price. Price matters
mainly in its direct influence on the utility from trade—a buyer pays the price,

5Relevant theoretical and experimental studies include Kyle 1985; Madhavan 1992; Pagano
and Roell 1996; Copeland and Friedman 1991, 1992; Cason and Friedman 1997, 2008; Schnit-
zlein 1996; Theissen 2000; Pouget 2007, inter alia. A consensus is that the consolidation of
orders allows simultaneous markets like call auctions to aggregate information. Pouget’s ex-
perimental call market is informationally efficient because of the high share of insiders, but
liquidity provision in call markets deviates more from equilibrium predictions. This finding
is consistent with ours, and Pouget, too, assigns the deviation from equilibrium strategies to
bounded rationality and partly to strategic uncertainty.

6Traders also have the option to reverse their limit order, selling at low prices and buying
at high prices. This ensures the equivalence between the treatments, see Section 2. In each
treatment, we restrict the trades to a single unit of supply or demand per trader.
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a seller receives it. In contrast, in SEQ, where transaction prices are known be-
forehand, asset demand uses the information contained in the price significantly
more, yielding trades that are closer to the empirical best response. Averaging
over all situations where the naive prediction differs from the empirically op-
timal trade, the frequency of naive trading is twice as high in SIM relative to
SEQ, at 37% versus 19%.

Section 5 identifies various possible sources underlying the difficulty of hy-
pothetical thinking in our markets. One possibility is that the participants feel
rather well-informed by their own signals, relative to what they can learn from
the price, and they may therefore neglect the price as an information source. We
thus repeat the experiment with two treatments where early traders are much
better informed than later traders, rendering learning from the price more im-
portant and more salient. We find that the replication only exacerbates the
differences between simultaneous and sequential markets, both in terms of be-
havior and payoff consequences. This evidence makes it implausible that the
bias is driven by negligence or the lack of salience of the price’s informativeness.

A further hypothesis is that the effect arises due to the difficulty in correctly
interpreting human choices. As in the literature examining inference in games
versus in single-person tasks (Charness and Levin, 2009; Ivanov et al., 2010), we
ask whether the bias also occurs if the price’s informativeness is generated by an
automated mechanism. The corresponding treatment comparison replicates the
main results. We can therefore rule out that the effect is driven by the necessity
of responding to the behavior of others.

Finally, we ask whether the difficulty in contingent reasoning lies in the
cognitive load of required inference, or rather in the hypothetical nature of
price. In a separate treatment we draw subjects’ attention to one contingency
by presenting a single possible price that may realize. Participants submit their
hypothetical buy/sell preference at this one possible, but not yet realized, price.7
The rate of optimal choices in this treatment lies mid-way between that of the
two main treatments, illustrating that the difficulty of contingent thinking is
significantly fueled by both the amount and the hypothetical nature of possible
prices in simultaneous markets.

We then combine the different treatments into an aggregate estimation of
information use (Subsection 5.4). The analysis of the combined simultane-
ous treatments shows that relative to empirical best response, the participants
under-weight the information contained in the price to a degree that is sta-
tistically significant (at p = 0.09 in a one-sided test) and that they strongly
over-weight their own signal’s importance. In the sequential treatments, they
over-weight both price and their own signal. Overall, the estimates indicate
that traders far under-weight the prior distribution of the asset’s value but that
they nevertheless learn too little from the price in simultaneous markets.

Taken together, the experiments provide evidence of an interaction between
market microstructure and the efficiency of information usage. We find that the
degree of naiveté is higher when the information contained in the price is less
accessible: with price not yet realized, traders behave as if they tend to ignore
the connection between other traders’ information and the price. Aggregate
demand therefore decreases too fast with the price. The economic bearing of

7In the language of Esponda and Vespa (2019), this treatment singles out the contingent
preference that may not necessarily coincide with the original preference.
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the effect is further discussed in Section 6. We examine the predictions of Hong
and Stein (1999) and Eyster et al. (2019) that markets with naive traders, who
cannot learn from the price, generate an inefficient and slow price discovery.
Naive traders tend to speculate against the price, pushing it back towards its
ex-ante expectation. Their erroneous speculation therefore reduces the extent
to which the price reveals the underlying value. Confirming this prediction,
we simulate a standard price setting rule with our data and find that price
discovery is slower in simultaneous treatments than in sequential treatments.
Any (hypothetical) subsequent trader therefore learns less from the price. But
naiveté is detrimental not only to later players: also the observed payoffs of our
market participants are lower in SIM than in SEQ, albeit not to a large extent.

While we focus on markets, we again emphasize that our findings are also
consistent with evidence in very different domains. The experimental literatures
in economics and psychology provide several sets of related evidence that con-
ditional inference is suboptimal. Psychologists have confirmed quite generally
that decision processes depend on task complexity (Olshavsky, 1979) and that
decision makers prefer decision processes with less cognitive strain. They focus
on one model, one alternative or one relevant category when reflecting about
possible outcomes and their consequences (Evans, 2007; Murphy and Ross, 1994;
Ross and Murphy, 1996). They also process salient and concrete information
more easily than abstract information (see e.g. Odean, 1998, and the literature
discussed there).

Several authors before us have pointed out that a possibility to reduce the
complexity of learning is to proceed in a sequential mechanism.8 Our experi-
ment suggests a specific manifestation of this effect, namely that drawing the
attention to the realized price may enable a more rational interpretation of the
price. In the related bilateral bargaining experiment by Carrillo and Palfrey
(2011), buyers also trade more rationally in a sequential trading mechanism
than in a simultaneous one. They process information more easily and exhibit
less non-Nash behavior when facing a take-it-or-leave-it price instead of bid-
ding in a double auction. Auction experiments similarly find that overbidding
is substantially reduced in dynamic English auctions compared to sealed-bid
auctions (Levin et al., 1996). Another related study is the voting experiment
of Esponda and Vespa (2014) who find that when the voting rules follow a
simultaneous game that requires hypothetical thinking, the majority of partic-
ipants behave nonstrategically, whereas in the sequential design they are able
to extract the relevant information from others’ actions and behave strategi-
cally. Other recent studies directly investigate the importance of contingent
reasoning. Subjects appear to systematically disregard relevant information
that is conveyed by future, not yet realized events: Charness and Levin (2009)
and Koch and Penczynski (2018) show that overbidding in simultaneous mecha-
nisms decreases when finding the optimal solution does not necessitate updating
on future events.910 Esponda and Vespa (2019) reduce the extent of anomalies

8Shafir and Tversky (1992) note that participants see their preferences more clearly if they
focus on one specific outcome. As they observe, "[t]he presence of uncertainty [...] makes it
difficult to focus sharply on any single branch [of a decision tree]; broadening the focus of
attention results in a loss of acuity" (p.457).

9Charness and Levin (2009) analyze the Winner’s Curse in a takeover game, whereas Koch
and Penczynski (2018) focus on common-value auctions.

10Note that inferences from hypothetical events differ from inferences from absence of events
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in various decision problems with an experimental protocol that better eluci-
dates payoff consequences of each contingency. The experiments in Martínez-
Marquina et al. (2019) point out the role of uncertainty in the failure to engage
in contingent thinking. By comparing a stochastic and deterministic variant of
the acquiring-a-company game they show that the cognitive load of having to
reason through several outcomes does not fully account for the difficulty with
contingent reasoning. This difficulty has also given rise to theoretical concepts
like ‘obviously dominant strategies’ (Li, 2017) or ‘obvious preferences’ (Zhang
and Levin, 2017).

We complement the described evidence on contingent thinking in strategic
situations (bilateral bargaining games, auctions and strategic voting games) by
addressing markets that clear exogenously and where traders are price takers.
The simple structure of the traders’ decision problems may make it easy for
our participants to engage in contingent thinking—a possibility that the data
refute—and helps us to straightforwardly assess whether traders make too much
or too little inference from the price.

2 Experimental design
The basic framework is identical across treatments, involving a single risky asset
and money. A market consists of two traders, trader 1 and trader 2, who each
either buy or sell one unit of the risky asset.11 We denote agent i’s positive or
negative unit demand with Xi ∈ {1,−1}. The asset is worth θ ∈ {θ, θ}, with
equal probabilities. For all trades, the experimenter takes the other side of the
market, which therefore always clears. In case of a buy, the profit Πi of trader
i ∈ {1, 2} is the difference between the asset value and the market price pi, and
vice versa if the asset is sold:

Πi = (θ − pi)Xi (1)

Traders do not observe the fundamental value θ but they each receive a
private signal si ∈ [0, 1].12 The true value θ determines which of two triangular
densities the signal is drawn from, such that in the low-value state participants
receive low signals with a higher probability, and vice versa:

f(si|θ) =
{

2(1− si) if θ = θ

2si if θ = θ
i ∈ {1, 2} (2)

Conditional on θ, the two traders’ signals are independent.

like in Jin et al. (2018) and Brown et al. (2012). In our setting, the absence or presence of
events itself does not reveal any additional information because strategies are contingent on
realized events only, even in simultaneous mechanisms where events are realized at a later
point in time.

11Because of a possible reluctance to sell short, we avoid any notion of short sales in the
experimental instructions. Participants are told that they already possess a portfolio that
needs to be adjusted by selling or buying one unit of a given asset.

12A binary signal structure would have been easier to implement in an experiment but
would also have reduced the identifiability of naive trader 2 behavior. With a binary signal
and an efficient pricing rule, a naive trader differs from a rational trader only in that he is
indifferent between buying and selling in cases where both traders receive identical signals.
With continuously-valued signals, more differences between naive and rational trading arise.
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As we are interested in informational inefficiencies in markets, we consider an
environment with a natural source of strategic uncertainty: trader 1’s decision
determines the informativeness of trader 2’s price. Trader 1 and 2 therefore face
separate transaction prices pi. We first describe the (uninformative) price for
trader 1 as well as his trading task, which is identical in both treatments. We
then describe the resulting (informative) price for trader 2 and her task, which
differs across treatments.

2.1 Task of trader 1
Trader 1’s price p1 is uniformly distributed in [θ, θ] and is uninformative about
the fundamental value θ. Trader 1 receives a private signal s1, as described
above, and states his maximum willingness to pay by placing a limit order b1.
If p1, which is unknown at the time of b1’s submission, lies weakly below b1, the
trader buys one unit of the asset. If p1 strictly exceeds b1, he sells one unit.13

By checking an additional box, trader 1 may convert his limit order into a
“reversed” limit order. A reversed limit order entails the opposite actions: the
trader buys if p1 weakly exceeds b1, otherwise he sells. (Only few participants
make use of it; we defer the motivation for allowing reversed limit orders to
Subsection 2.2.2.) Let Z1 denote the indicator function that takes on value 1 if
a limit order is reversed, and 0 otherwise. Trader 1’s demand is X1(p1, b1):

X1(p1, b1) = Y1(p1, b1)(1− Z1)− Y1(p1, b1)Z1 (3)

Y1(p1, b1) =
{

1 if p1 ≤ b1

−1 if p1 > b1
where p1 ∼ U [θ, θ]

The demand resulting from a standard limit order corresponds to Y1(p1, b1),
while X1(p1, b1) incorporates the trader’s choice of reversing the limit order. We
will denote demand by Xi instead of Xi(pi, bi) whenever it is unambiguous.

In sum, trader 1’s demand is based on a single piece of information, the
signal s1, and is expressed by a single bid, b1. As we will describe in Section
3.1, the optimal bid b1 increases linearly in s1.

2.2 Task of trader 2
Trader 2 is informed that the price p2 reflects the expectation of an external
market maker who observes trader 1’s buying or selling decision and, on that
basis, infers information about trader 1’s signal s1. Importantly, to avoid any
ambiguity in the description, trader 2 learns the pricing rule that maps p1 and
the realized value of X1 into p2:

p2 =


θ+p1

2 , if X1 = 1

θ+p1
2 , if X1 = −1

(4)

13The design does not allow for a “no trade” option that may add noise and complications
to the data analysis. We opted for a minimal set of actions that enables participants to state
their preference to buy and sell with a single number.
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This mapping reflects the Bayesian inference on behalf of the market maker,
assuming rational bidding of trader 1.

Along with the equation for the price, participants receive a verbal explana-
tion of the implied fact that for given p1, trader 2’s price p2 can take on only
one of the two listed possible realizations, depending on whether trader 1 buys
or sells. The rule implies that p2 is informative about the asset value θ: trader
1’s private signal s1 influences p2 through X1. It is therefore optimal for trader
2 to condition her investment decision on both s2 and p2.

In the two main treatments, trader 2 faces the same pricing rule but different
decision tasks.

2.2.1 Simultaneous treatment (SIM)

Trader 2 observes trader 1’s price p1 and her own private signal s2. Like trader
1, she chooses a limit order, b2. Importantly, and different from the sequential
treatment, trader 2 does not know her own price p2 when submitting b2. She
buys a unit of the asset if p2 ≤ b2, and otherwise she sells a unit of the asset.
Optionally, she can change her bid into a reversed limit order.

2.2.2 Sequential treatment (SEQ)

In treatment SEQ, trader 2 observes the price p2 as specified in (4) before mak-
ing her decision. The game proceeds sequentially, with trader 1 first choosing
his bid b1. As in treatment SIM, his demand X1 determines the price for trader
2, p2. Trader 2 observes the realized values of {p1, p2, s2} and then chooses
between buying and selling at p2.

It is straightforward to check that treatments SIM and SEQ are strate-
gically equivalent. For any given s2, treatment SEQ allows for four possible
strategies contingent on p2 ∈ { θ+p1

2 , θ+p1
2 }: {buy, buy}, {buy, sell}, {sell, buy}

and {sell, sell}. In treatment SIM, the possibility to reverse the limit order en-
ables the same four combinations of buying and selling contingent on p2. This
implies that strategy spaces are equivalent between treatments SIM and SEQ,
and equally so for the corresponding payoff consequences. Rational responses
to a fixed belief about trader 1 would therefore lead to the same purchases and
sales in the two treatments.14

3 Predictions
We mainly focus on trader 2 and compare the participants’ behavior to three
theoretical predictions. The first two are variants of the case that trader 2 has

14This statement holds under the assumptions of subjective utility theory. Generalizations
of expected utility can lead to different choices across treatments. For instance, while in
treatment SEQ buying/selling choices at known prices can be described as choices over two
simple lotteries, setting limit orders in SIM corresponds to choices between three compound
lotteries with uncertainty over dichotomous asset values and prices. Hence, violations of the
compound independence axiom or of the reduction of compound lotteries could also generate
inconsistencies across treatments (cf. Karni and Safra, 1987; Segal, 1988, 1990; Keller et al.,
1993). Our experiment was not designed to compare between non-expected utility theories.
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rational expectations and properly updates on her complete information set. As
the third benchmark prediction, we consider the case that trader 2 fully neglects
the price’s informativeness. For all three predictions, we assume traders to be
risk-neutral.15

3.1 Rational best response of trader 1
The optimal bid function of trader 1 is straightforward. Trader 1 has only his
private signal s1 to condition on. His optimal limit order b∗1 is not reversed and
maximizes the expected profit conditional on s1. It is easy to show (using the
demand function (3)) that b∗1 increases linearly in the signal:

b∗1(s1) = arg max
b1

E[(θ − p1)X1(p1, b1)|s1] = E[θ|s1] = θ + (θ − θ)s1 (5)

3.2 Rational best response of trader 2
Under rational expectations about trader 1’s strategy, trader 2 maximizes her
expected payoff via conditioning on both her private signal s2 and the informa-
tive price p2. If her maximization problem has an interior solution, it is solved
by the following fixed point:16

b∗2(s2) = E[θ|s2, p2 = b∗2(s2)] (6)

The optimal bidding of trader 2 follows a cutoff strategy that switches from
buying to selling as the price increases. At a price equal to the (interior) cutoff
b∗2, the trader is indifferent between a buy and a sell.

Even in the current design where prices can only take two possible values,
the exercise of inferring the correct information from the pricing rule in (4)
remains complex. Using this additional information does, however, not neces-
sarily require extreme sophistication as the Bayes-Nash (BN) strategy of trader
2 simplifies here to a step function: p2 reflects the market maker’s expectation
(see (4)), implying that in equilibrium p2 would make trader 2 indifferent in the
absence of her own signal s2. The additional information contained in s2 breaks
the tie, such that trader 2 buys for s2 ≥ E[s2] = 1

2 , and sells otherwise. Notice
that the extreme prediction in form of a step function results directly from the
efficient pricing rule p2, which equals correct expectations under Bayes-Nash. If
the price p2 is only a noisy reflection of market expectations, then the Bayesian
strategy becomes a less steep, S-shaped curve.

In this sense, the BN best response is not the most payoff-relevant ’rational’
benchmark. In the experiment, participants in the role of trader 1 deviate from
their best response b∗1 and participants acting as trader 2 would optimally adjust
to it. Their price p2 is still informative about θ because it reflects s1, but p2
does not equal the exact expectation if trader 1 deviates from X1(p1, b

∗
1). For

a stronger test of naive beliefs, we consider the empirical best response (EBR)
15Risk aversion shifts the bid function toward the more cautious trading strategy of buying

below (and selling above) the ex-ante expected price, which avoids large losses and gains. Risk
aversion alone, however, cannot explain differences between treatments.

16For a simple proof of this statement, verify that if b∗2 were to violate (6) then there would
exist realizations of (p2, s2) such that p2 lies in the vicinity of E[θ|s2, p2 = b∗2] and profits
would be forgone.
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to the participants acting as trader 1. The empirical best response is computed
via a numerical approximation to the fixed point equation (6).

The two benchmarks BN and EBR are depicted in Figure 1 (for the param-
eters of the actual experiment that are reported in Section 4, and using the
empirical behavior, pooled across treatments SIM and SEQ, for the calculation
of EBR), together with the naive prediction that we describe next.17 The graphs
represent the prices at which, for a given signal, trader 2 is indifferent between
buying and selling. She is willing to buy at prices below the graph and willing
to sell at prices above the graph. The EBR graph is less steep than that of BN:
e.g., for an above-average level of p2, EBR requires trader 2 to buy only if she
has sufficiently positive information (high s2).

3.3 Best response to naive beliefs of trader 2
Contrasting the optimal behavior, a trader 2 with naive beliefs does not infer
any information from the price. She fails to account for the connection between
trader 1’s signal s1 and his demand X1 and, instead, conditions on her own
signal s2 only. The maximization problem with naive beliefs is then analogous
to that of trader 1 and leads to the same bidding behavior:

bN2 = arg max
b2

E[(θ − p2)X2(p2, b2)|s2] = E[θ|s2] = θ + (θ − θ)s2 (7)

The naive strategy is depicted as the straight line in Figure 1. Its underly-
ing belief is equivalent to level-1 reasoning or fully cursed beliefs. In the level-k
framework (for a formulation with private information, see e.g. Crawford and
Iriberri, 2007) level-0 players ignore their information and randomize uniformly
and a naive trader 2, as defined above, is therefore equivalent to a level-1 agent.
In our setting, this prediction also coincides with a fully cursed strategy of Eyster
and Rabin (2005) and Eyster et al. (2019) that best responds to the belief that
agent 1’s equilibrium mixture over bids arises regardless of their information.18

Note that while naiveté can be modeled with level-k reasoning or fully cursed
beliefs, these concepts do not distinguish between sequential and simultaneous
decisions and do, per se, not account for differences between treatments. Simi-
larly, Li (2017)’s concept of obviously dominant strategies would not account for
differences between simultaneous and sequential treatments because none of the
strategies in treatment SEQ is obviously dominant. For any price-contingent
buy and sell, the asset’s stochastic value may generate payoffs in both the gain
and loss domain. Li’s general idea may nevertheless apply in that it may be
easier to compare relevant payoffs conditional on a single price.

17The kinks in the EBR function arise because of the numerical approximation to the fixed
point. For close approximation, signals are rounded to lie on a grid with step size 0.1.

18In fully cursed equilibrium, trader 2 believes that trader 1 with signal s1 randomizes
uniformly over his possible bids: trader 2 expects that trader 1 with signal s1 has a bid
distribution equal to that resulting from the optimal bids given in (5), independent of s1.
The perceived mixture of bids by each type of trader 1 therefore follows the distribution
F ( b−θ

θ−θ
) = F (s1), with density 1

2f(s1|θ) + 1
2f(s1|θ) = 1. The analysis of Eyster and Rabin

(2005) and Eyster et al. (2019) also allows for intermediate levels of naiveté, where agents
may only partially ignore the information revealed by other agents’ actions. Our estimations
in Subsection 5.4 also allow for milder versions of information neglect.
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Figure 1: Naive, Bayes Nash and empirical best responses of trader 2.

3.4 Hypotheses
As outlined in the Introduction, we conjecture that updating on additional
market information is more difficult in the simultaneous treatment than in the
sequential treatment. Using the benchmarks from the previous subsection, we
translate the conjecture into a behavioral hypothesis:

Hypothesis 1 Naive bidding is more prevalent in treatment SIM than in treat-
ment SEQ.

The hypothesis is tested in the next section by considering those decisions
of trader 2 where EBR and Naive bidding differ, separately for each of the two
treatments. As shown in Figure 1, EBR and Naive bidding predict different
decisions in the area between the two graphs. For instance, at prices within this
area, a naive agent with a signal below 0.5 would buy whereas she would sell
according to EBR.

Our second hypothesis considers the possibility that all participants acting
as trader 2 have naive beliefs. In this case, the symmetry of the two traders’
decision problems would induce symmetry between their bid distributions. We
can therefore use trader 1’s bid distribution as an empirical benchmark for naive
traders 2. We restrict the comparison to treatment SIM, where the two traders
have identical action sets.

Hypothesis 2 In treatment SIM, bids of trader 2 do not significantly differ
from bids of trader 1.

4 Experimental procedures and results
4.1 Procedures
The computerized experiment was conducted at Technical University Berlin,
using the software z-Tree (Fischbacher, 2007). A total of 144 students were
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recruited for the two main treatments, with the laboratory’s ORSEE database
(Greiner, 2004). 72 participants were in each of the treatments SIM and SEQ,
each with three sessions of 24 participants. Within each session, the participants
were divided into two equally sized groups of traders 1 and traders 2. Partici-
pants remained in the same role throughout the session and repeated the market
interaction for 20 rounds. At the beginning of each round, participants of both
player roles were randomly matched into pairs and the interaction commenced
with Nature’s draw of θ, followed by the market rules as described in Section
2. At the end of each round, subjects learned the value θ, their own transaction
price (if not already known) and their own profit. Upon conclusion of the 20
rounds, a uniform random draw determined for every participant one of the 20
rounds to be paid out for real.
Participants read the instructions for both roles, traders 1 and 2, before learning
which role they were assigned to. Instructions included an elaborate computer-
based simulation of the signal structure as well as a comprehension test. The
support of the asset value was {40, 220}.19 Each session lasted approximately
90 minutes and participants earned on average EUR 22.02. Total earnings con-
sisted of a show-up fee of EUR 5.00, an endowment of EUR 15.00 and profits
from the randomly drawn round (which could be negative but could not de-
plete the entire endowment). Units of experimental currency were converted to
money by a factor of EUR 0.08 per unit.

4.2 Results
4.2.1 Trader 1

For a cleaner comparison of the two treatments, we analyze realized trades
instead of bids, thereby considering also the suboptimal, reversed limit orders
(3% of all bids in treatment SIM). Figure 2 shows the implemented buys and
sells of participants acting as trader 1 in treatment SIM, with the corresponding
market price on the vertical axis and their private signal on the horizontal axis.
(Results for trader 1 in treatment SEQ are very similar.) The figure also includes
the theoretical prediction and the results of a probit estimate of the mean bid.
The mean bid increases in the signal, even slightly stronger than is predicted
by the benchmark theory. This overreaction is not significant, though.

4.2.2 Trader 2: Testing hypotheses

Hypothesis 1. To evaluate the degree of naiveté, we focus on the area of Fig-
ure 1 where naive and optimal strategies make different predictions. That
is, we consider the set of trades X2(s2, p2) with prices and signals between
the solid (bNaive2 ) and the dashed (bEBR2 ) bidding functions: {X2(s2, p2) ∈
{−1,+1} |

(
(s2 < 0.5) ∩ (bEBR2 ≤ p2 ≤ bNaive2 )

)
∪
(
(s2 > 0.5) ∩ (bNaive2 ≤ p2 ≤

bEBR2 )
)
}. Figures 3 and 4 show the relevant observations in treatments SIM

and SEQ, respectively. For these observations, naive expectations induce buys
for signals below 0.5 and sells for signals above 0.5, while rational expectations
induce opposite actions. Within this relevant area, we calculate the proportion

19See the Online Appendix for a set of instructions for treatments SIM and SEQ. We chose
the mildly unusual asset values {θ, θ} = {40, 220} in an attempt to avoid midpoint effects.
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Figure 2: Trades of traders 1.
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Figure 3: Sells and buys of trader 2 within the relevant area in treatment SIM.
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Figure 4: Sells and buys of trader 2 within the relevant area in treatment SEQ.

η of naive decisions:

η = dN
dN + dB

(8)

where dN and dB denote the number of orders consistent with naive (triangle
markers in Figures) and EBR (cross markers) predictions, respectively. Hypoth-
esis 1 is confirmed if the proportion of naive choices is larger in treatment SIM
than in treatment SEQ: ηSIM > ηSEQ.
Indeed, we find that neglect of information contained in the price is stronger
in a simultaneous market. Appendix Table A2 shows that the share of naive
decisions in treatment SIM (η = 0.37) is twice as large as in treatment SEQ
(η = 0.19).20 The difference is statistically significant (p = 0.0091, Wald test).21

An especially strong difference between the two treatments appears in situ-
ations where trader 2 has a relatively uninformative signal, s2 ∈ [0.4, 0.6], i.e.,
when traders have the strongest incentive to make trading contingent on the
price. In these cases, the frequency of buying at a price below the ex-ante mean
of p2 = 130 is at 0.68 in SIM and at 0.37 in SEQ. Similarly, the frequency of
buying at a high price, above p2 = 130, is at 0.28 in SIM and at 0.48 in SEQ.
This illustrates that treatment SEQ’s participants were less encouraged by low
prices and less deterred by high prices, respectively, than treatment SIM’s par-
ticipants, consistent with a relatively more rational inference in the sequential
market.

The same conclusion is reached with an alternative measure that uses the
complete set of observations. We estimate the mean bid function and compute

20Appendix Table A2 shows that this effect is robust for high and low signals (i.e., s2 > 0.5
vs. s2 ≤ 0.5) but it is generally larger for high signals.

21All presented tests account for robust standard errors clustered at the subject level.
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its Euclidean distance to the EBR benchmark (as shown in Figure 1). We find
that in both treatments average bidding functions significantly deviate from the
EBR benchmark (p < 0.001 in Kolmogorov-Smirnov test for both treatments)
but subjects in treatment SEQ bid, on average, closer to the EBR than their
peers in treatment SIM (mean distance of 13.74 ECU in SEQ vs. 22.02 ECU in
SIM). This is true for all signals (see Appendix Figure A 1).

In Appendix A.3, we also consider the evolution of decisions in the course
of the experiment. Participants tend to bid less naively over time in most
treatments but these experience effects are mostly non-significant.22

Hypothesis 2. Hypothesis 2 compares the buy and sell decisions of traders
1 and 2 in treatment SIM. Figure 5 reveals that the two traders’ average bid
functions do not significantly, or even perceivably, differ from each other. Just
like trader 1, trader 2 shows no significant deviations from a linear bidding
function, an observation that is consistent with full naiveté of trader 2.

This evidence of trader 2’s full naiveté nevertheless requires a cautious in-
terpretation. Outside the relevant area, the use of reversed limit orders draws
a differentiated picture. While reversing the limit order is a strictly suboptimal
strategy for trader 1, the Bayes-Nash best response of trader 2 can also be sus-
tained with extreme reversed limit orders. Most empirical best responses cannot
be made with reversed limit orders, but their use may hint at trader 2’s partial
sophistication. In line with this, subjects in the role of trader 2 reverse their
limit order more often than those in the role of trader 1 (15% for trader 2 vs.
3% for trader 1 in treatment SIM). Dynamics shed additional light on whether
these reversed limit orders might be due to confusion or partial sophistication:
subjects in the role of trader 1 use fewer reversed limit orders over time, sug-
gesting that they recognize reversing as a dominated strategy, whereas those in
the role of trader 2 significantly increase their use of reversed limit orders over
time (e.g. an increase of 11% to 19% in SIM between early versus late rounds,
see Appendix A.3). Yet, in the aggregate, these reversed limit orders do not
generate more Bayes-rational trades.

5 Possible drivers of information neglect
5.1 Signal strength
One possible driver of the observed information neglect is that the participants’
strong private signals might distract them from the information contained in
the price. In a challenging and new environment, participants may perceive
the benefit from interpreting the price as relatively low. In real markets, in-
vestors may be more attentive to the price’s informativeness, especially when
they themselves have little private information.

We examine the hypothesis by introducing an asymmetric signal strength
between trader 1 and trader 2, keeping the rest of the design unchanged. In
two additional treatments with “Low Signal Quality”, LSQ-SIM and LSQ-SEQ
(with N = 70 and N = 68, respectively), trader 2’s signal is less informative
than in the main treatments. The densities in the new treatments are depicted

22Random effects probit regressions with a reciprocal time trend do, however, detect sig-
nificant experience effects in treatments SIM and LSQ-SEQ, as we present in the Online
Appendix.
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Figure 5: Estimated average bids of traders 1 and 2 in treatment SIM.
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in Figure 6 and take the following form.

f(si|θ = θ) = 1− τi(2si − 1)
f(si|θ = θ) = 1 + τi(2si − 1)
with τ1 = 1 and τ2 = 0.2.

The Bayes-Nash prediction remains unchanged relative to the main treat-
ments and the naive prediction adjusts by generating a “flatter” reaction to s2.
The empirical best response is mildly “steeper” in the LSQ treatments, as it is
optimal to follow the price more. Our analysis accounts for this difference.

Behavior of trader 2 deviates from the naive prediction in both treatments
LSQ-SIM and LSQ-SEQ, as participants indeed show a steeper response (see
Figure A 3). From the probit estimation alone it is, however, not clear whether
this steeper response comes from an increased sensitivity to price or signal.
The estimation of a random utility model in the Online Appendix suggests that
participants in treatment LSQ-SIM consider the information contained in prices
even less, compared to treatment SIM.

Regarding the robustness of the main result, we observe that the discrepancy
between the two market mechanisms increases with information asymmetry.
The share of naive decisions in treatment LSQ-SEQ (22%, black triangles in
Figure 7b) is much smaller than in LSQ-SIM (44%, black triangles in Figure 7a,
different from LSQ-SEQ at p = 0.0003, Wald test). Also, participants in the
role of trader 2 of LSQ-SEQ act more frequently against their own signal (see
Appendix Table A1). In sum, the importance of trading mechanisms for rational
decision making prevails under the new informational conditions.

5.2 Strategic uncertainty
Strategic uncertainty makes for part of the game’s complexity. For an accurate
interpretation of price, participants in the role of trader 2 need to consider
the trading behavior of trader 1 and their ability to do so may vary between
simultaneous and sequential mechanisms. In other words, the necessity to assess
the human-driven EBR (not just the simpler BN response) may lead to less
optimal behavior by trader 2 in treatment SIM relative to SEQ.

We therefore examine whether the treatment effect appears also in two ad-
ditional treatments labelled “No Player 1” (NP1), containing 40 participants
in NP1-SIM and 46 in NP1-SEQ, all of whom act in the role of trader 2. In
these treatments we delete trader 1’s presence. Participants acting as trader 2
are informed that the price is set by a market maker who receives an additional
signal. This additional signal follows a distribution that mimics the information
of the market maker when observing the demand X1(p1, b1) of a trader 1 who
behaves rationally.23

For better comparison with the main treatments, the instructions of the
NP1 treatments retain not only much of the wording but also the chronological
structure of the main treatments. Participants in NP1 treatments thus learn
about the existence of p1, which is presented to them as a random “initial value”
of the asset’s price, and they learn that the market maker observes an additional

23The distributions of the additional signals (one for each asset value) are shown in a
graphical display. The instructions do not explain the distributions’ origins.
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Figure 7: Trader 2’s buys and sells consistent with either naive bidding or EBR in LSQ-SIM
and LSQ-SEQ, respectively.
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signal that is correlated with the asset’s value. Like in the main treatments,
the instructions display the updating rule (4) and explain that it results in the
price p2 at which the participants can trade and which reflects the expectation
of the asset’s value, conditional on the market maker’s additional signal but not
conditional on the participants’ own signal.

The effect of simultaneous versus sequential trading persists. The share of
naive decisions is two and a half times higher in NP1-SIM than in NP1-SEQ
(45.27% vs. 17.67%). We also observe significantly more buys at high prices and
more sells at low prices in NP1-SEQ. Figure 8 shows the individual decisions for
cases where naive and rational predictions differ, in treatments NP1-SIM and
NP1-SEQ, respectively.

5.3 Number of decisions per treatment
Our last treatment addresses the question whether the higher frequency of naive
decisions in SIM may stem from the additional cognitive strain that conditional
thinking requires. Perhaps, it is not conditionality per se that is difficult for the
participants, but the fact that they have to make two decisions in treatment
SIM (one for each possible price realization) and only one in treatment SEQ.

We therefore introduce a “hypothetical” sequential treatment (Hyp-SEQ)
with 62 participants, which rules out higher dimensionality of strategies as a
source of difficulty. Treatment Hyp-SEQ is analogous to SEQ in that after
learning trader 1’s price p1, participants in the role of trader 2 specify their
buying or selling for a single price. However, they do so conditionally, for a
single candidate price p̂2 that is equiprobably drawn from the two price values
that are possible after updating via rule (4). Participants decide whether they
would buy or sell at p̂2 and the decision is implemented if and only if trader
1’s demand induces the realization p2 = p̂2. Otherwise, trader 2 does not trade
and makes zero profit.

Participants in treatment Hyp-SEQ thus face only one price and make only
one decision, rendering the task dimensionality identical to that in SEQ. (The
instructions are almost word-for-word identical.) But the nature of the decision
in Hyp-SEQ is contingent, like in treatment SIM. We can therefore assess the
importance of task dimensionality by comparing SIM versus Hyp-SEQ, and the
role of conditionality by comparing SEQ versus Hyp-SEQ.24

Figure 9 and Appendix Table A2 show that the frequency of making subop-
timal decisions (η) in Hyp-SEQ lies well in between those of SEQ and SIM. The
significant difference between treatments SIM and Hyp-SEQ (0.37 versus 0.28,
p=0.077, one-sided t test) shows that reducing the set of hypothetical prices
considerably improves decision-making. Yet, the frequency of naive decisions
is still significantly higher in Hyp-SEQ than in the fully sequential treatment
SEQ, (0.28 versus 0.19, p=0.071, one-sided t test).25 Altogether, we conclude
from the above tests that reducing the number of hypothetical trading decisions

24Esponda and Vespa (2019) account for irrational decisions by allowing their so-called
original, contingent and conditional preferences to be different primitives. In our experiments,
treatments SIM, Hyp-SEQ and SEQ elicit the original, contingent and conditional preferences,
respectively.

25Notice that the lower rate of suboptimal decisions in Hyp-SEQ relative to SIM is consistent
with the main idea of Li’s (2017) obvious strategy proofness: in Hyp-SEQ, the set of relevant
prices is reduced to a singleton, helping the participants to detect the optimal strategy.

19



50
10

0
15

0
20

0
25

0
Pr

ic
e 

   
p 2

0 .2 .4 .6 .8 1
Signal

Empirical best responses Naive responses

(a) NP1-SIM

50
10

0
15

0
20

0
25

0
Pr

ic
e 

   
p 2

0 .2 .4 .6 .8 1
Signal

Empirical best responses Naive responses

(b) NP1-SEQ

Figure 8: Trader 2’s buys and sells consistent with either naive or Bayesian bidding in
NP1-SIM and NP1-SEQ, respectively.
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Figure 9: Trader 2’s buys and sells consistent with either naive bidding or EBR in Hyp-SEQ.

reduces the degree of naiveté, but does not eliminate it.26 27

5.4 Random utility model
This subsection pools the data for a statistical comparison of sequential versus
simultaneous mechanisms. We combine the data from all simultaneous treat-
ments into a data set “SIM+” and those from sequential treatments into a data
set “SEQ+”. (Data from the hybrid treatment Hyp-SEQ are excluded here but
estimates for individual treatments can be found in Appendix Table A4.) We
assume that the probability with which trader 2 buys the risky asset follows a
logistic distribution, allowing for an over-weighted or under-weighted relevance
of the available pieces of information:

P (X2 = 1|ui, s2, p2) = eλ(Ê[θ|p2,s2]−p2+ui)

1 + eλ(Ê[θ|p2,s2]−p2+ui)
(9)

26Ngangoue and Weizsäcker (2015) shows a first version of the experiment where the simul-
taneous treatment elicits buy and sell preferences for a list of 26 hypothetical prices (treatment
“Price List”), instead of 2 as in the present paper’s treatment SIM. There, we find the neglect
of the price informativeness to be even more pronounced, which is also consistent with an
effect of task dimensionality. The 2015 experiment, however, also has other differences to the
present one.

27This finding is consistent with the experimental results in Martínez-Marquina et al. (2019),
showing that the difficulty with contingent reasoning cannot be reduced to the difficulty of
thinking through several outcomes.
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with

Ê[θ|p2, s2] = 40 + 180 · P̂ (θ = 220|p2, s2) (10)
P̂ (θ = 220|p2, s2) = [1 + LR(s2)−β · LR(p2)−α]−1 (11)

The choice probability (9) depends on subjectively expected payoff, Ê[θ|p2, s2]
− p2. The parameter λ reflects the precision of the logistic response and ui is
the subject-specific random utility shifter, which we assume to be normally dis-
tributed with mean 0 and variance σ2

u. To allow for irrational weighting of
information, we introduce the subjective posterior probability of the event that
θ = 220, given by P̂ (θ = 220|p2, s2). Analogous to the method introduced by
Grether (1992), we let the posterior probability depend on the likelihood ratios
of the signal and the price, LR(s2) ≡ P (θ=220|s2)

P (θ=40|s2) and LR(p2) ≡ P (θ=220|p2)
P (θ=40|p2) , re-

spectively. The likelihood ratios are exponentiated by the potentially irrational
weights β and α that the participant assigns to the signal’s and the price’s in-
formational content. A participant with naive beliefs would correctly weight the
signal, β = 1, but would ignore the information in the price, α = 0. An inter-
mediate level of naiveté translates into α between 0 and 1. A rational trader
would correctly weight the signal and the price, β = α = 1. The model also
allows for an over-weighting of the signal or the price, by letting β or α exceed
1.

We estimate the model via Maximum Simulated Likelihood (MSL). To arrive
at LR(p2), we estimate the distributions P (p2|θ = 220) and P (p2|θ = 40) for
each treatment individually via kernel density estimation and infer P (θ=220|p2)

P (θ=40|p2)
for each p2 in the data set.

Table 1: Results of MSL estimation

Trader 1 Trader 2

SIM+ SEQ+

β 2.05∗∗∗ 2.54∗∗ 1.36∗∗∗
(0.31) (0.90) (0.36)

α - 0.60∗ 1.85∗∗∗
(0.26) (0.22)

λ 0.0314∗∗∗ 0.0230∗∗∗ 0.0373∗∗∗
(0.003) (0.004) (0.006)

σu 0.0010 0.0010 0.0039
N 3435 2220 2260
Note: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. Maximum
simulated likelihood estimation simulates subject-
specific random effects assuming ui ∼ N(0, σu). Std.
Err. in parentheses. Hypothesis testing for β and α
refers to one-sided tests of deviations from 1. The es-
timation for trader 1 pools all treatments with partici-
pants acting as trader 1 since their data do not signif-
icantly differ across treatments.
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The estimates are reported in Table 1 and confirm the findings of the previous
subsections. Trader 1’s model estimates serve as a benchmark. Participants in
the role of trader 1 overweight their private signal (β = 2.05), inducing a slight
S-shape of the estimated bid function (see Figure A 7).28 Traders’ 2 weighting
of the private signal decreases from 2.54 to 1.36 between the simultaneous and
the sequential treatments. Both of these β estimates differ from 1, but in the
sequential treatments β lies significantly below trader 1’s weighting of the private
signal (p = 0.0298, Wald test).

In the simultaneous mechanisms, the estimated α of 0.60 lies well below
the optimal value 1, albeit at a somewhat marginal statistical significance of
p = 0.09. While this difference from 1 reflects the hypothesis that participants
pay too little attention to the price’s informativeness, we can also reject the
extreme formulation of Hypothesis 2, stating that participants are fully naive:
α differs significantly from 0.

In the treatments with sequential mechanisms, the perceived levels of in-
formativeness of signal relative to price are reversed. These treatments induce
a significant over-weighting of the price’s likelihood ratio (α = 1.85).29 While
inferences in the sequential mechanisms are also not optimal (with the scale
parameter λ capturing the disturbances), the coefficients α and β in simulta-
neous and sequential mechanisms significantly differ from each other (p<0.001
in Chow likelihood ratio test with and without heterogeneous scale parameters
λ). Overall, the evidence from sequential treatments shows that the prior dis-
tribution of θ is under-weighted and that, confirming Hypothesis 1, sequential
markets reveal a significantly stronger inference from the price than simultane-
ous markets.

6 Discussion: Information neglect in markets
This section discusses the possible impact of naiveté on market efficiency. We
begin by stating a classical question on market prices: how do prices that arise
after a given trading pattern differ from equilibrium prices? Notice that this
question addresses the welfare of subsequent traders in the same market, i.e.,
traders outside of the set of traders that we consider in the experiment. We
therefore have to resort to auxiliary calculations.

A natural measure of price efficiency is the speed at which price aggregates
the traders’ dispersed pieces of information and converges to fundamental value.
With naive traders in the market, this speed may be reduced. Moreover, naive
traders may distort the price recovery process by suppressing some subsets of
possible signals more than others. Two theoretical contributions that study
the implications of naiveté on price are Hong and Stein (1999) and Eyster et al.
(2019). They both find, with different models, that the presence of naive traders
creates a bias of prices leaning towards their ex-ante expectation. The reason
is that naive traders are likely to engage in excessive speculation based on their
own signal—they bet against the market price too often. This pushes price

28Overweighting one’s own signal also appears in some, but not all, of the related inference
problems in herding experiments. See e.g. Goeree et al. (2007), and the meta analysis in
Weizsäcker (2010).

29This relates to Levin et al. (1996)’s finding that participants in the English auction put
relatively more weight on the latest drop-out prices compared to their own signal.
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towards its ex-ante mean.30

Testing this implication requires the simulation of a specific price mechanism
after trader 2 has completed her trades. For simplicity and for consistency
with the rule governing p2, we calculate the price that a market maker would
set in Bayes Nash equilibrium: the market maker sets the price p3 equal to
E[θ|X1, X2], where X1, X2 ∈ {−1, 1} denote the demand of traders 1 and 2,
assumed to follow the Bayes-Nash prediction. In our main treatments SIM and
SEQ, the price for a hypothetical trader 3 is thus a simple function of p2 and
X2:31

p3 =


−8800+310p2

50+p2
if X2 = 1

−8800+50p2
310−p2

if X2 = −1

Under the given pricing rule, price moves towards its extremes fast if both
signals s1 and s2 deviate from their expectation in the same direction. In this
case, both traders either buy or sell in equilibrium. For all cases where s1 and s2
lie on the same side of 0.5, Figure 10a shows the resulting distribution of Bayes
Nash price p3 as a dotted line, with much probability mass located towards the
extremes. If, in contrast, trader 2 bids naively, then she tends to sell at high
prices and buy at low prices, creating excessive density of p3 near the center of
the distribution (light grey line).

Figure 10a also depicts the kernel densities of the price p3 that would arise
from the actual trading in treatments SIM and SEQ. The price distribution
under SIM is close to that of naive bidding. In SEQ, prices deviate more from the
prior expectation and the distribution lies far closer to its equilibrium prediction.

Figure 10b shows the kernel densities when the two signals are on opposite
sides of their ex-ante expectation. Here, the aggregate information is not very
informative, prices with naive and Bayes-Nash traders do not differ much and
markets yield prices that revolve around prior expectations. Figure 10c depicts
the densities when taking into account all observations. Overall, the price dis-
tribution in treatment SEQ has a more pronounced bi-modal shape than in
treatment SIM.

In a nutshell, prices in the simultaneous mechanisms incorporate information
slowly. This finding is consistent with the momentum effect in call auctions
documented in Amihud et al. (1997) and Theissen (2000).

Another way to assess price efficiency in the two treatments is to compare the
variance of fundamental value conditional on the price, V ar[θ|p3]. It captures
the error in market expectations given information contained in p3. Conditional
variance is significantly lower in treatment SEQ than in SIM, at high level of
significance (p < 0.001, nonparametric median test, taking each market as a unit
of observation) and with a somewhat sizeable difference: in treatment SIM, the

30Hong and Stein (1999) analyze a dynamic model where information dispersion is staggered
in the market and where naive traders are myopic but can be exploited by sophisticated (yet
cognitively restricted) traders who start betting against the naive traders eventually. Price
can therefore overshoot at a later stage in the cycle. The model in Eyster et al. (2019) uses
partially cursed equilibrium to study mispricing, using a more standard (and more static)
model of financial markets with incomplete information akin to that in Grossman (1976).

31In treatments LSQ, we obtain p3 = 1030(−8.54p2)
770+p2

if X2 = 1, p3 = −770(11.43p2)
p2−1030 else.
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Figure 10: Kernel density of efficient price p3 after naive, rational and actual demand of
traders 1 and 2 in SIM and SEQ. The computation of price p3 is based on the empirical
distribution of the price p2.
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price explains on average 21% of the variance in the asset value, versus 27% in
treatment SEQ.32 In addition, in our experiment naive bidding leads to weakly
smaller profits and could have generated increased trading volume (see Appendix
A.1 and A.4).

7 Conclusion
How well traders are able to extract information in markets may depend on
the markets’ designs over and above ‘rational’ reasons. Although different but
isomorphic trading mechanisms should entail the same outcomes in theory, de-
cisions may vary. Our experiments provide an example where a specific subset
of inferences are weak: traders in simultaneous markets, where optimal trading
requires Bayesian updating on hypothetical outcomes, do not account for the
price’s informativeness. They therefore neglect information revealed by others’
investments. However, when the reasoning is simplified to updating on a single
realized event, such naiveté is mitigated. Traders are thus more likely to detect
covert information while focusing on a single outcome. In this sense, the degree
of inference and consequently the quality of informational efficiency interact
with market design. Of course, this is only a single setting and despite the
numerous robustness checks in the paper we must not presume generalizability.
It’s a stylized experiment, no more and no less. Subsequent work may address,
for example, the largely open research question of price efficiency in sequential
trading with more than two consecutive traders.

32This uses a measure for informational efficiency (IE) that is standard in the finance liter-
ature (see e.g. Brown and Zhang 1997; De Jong and Rindi 2009): IE = 1− E[V ar[θ|p3]]

V [θ] .
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A Online Appendix
A.1 Descriptive statistics and additional figures
Trading against private information. Table A1 shows the shares of buys when
prices and signals reflect contrary information because they lie on opposite sides
of their corresponding prior expectation. Trading decisions that conform rather
with the information in the price than with the information in the signal indicate
that participants gave thought to the price’s informativeness. In all treatment
variations, traders 2 in the sequential mechanisms traded more often against
the information contained in their own signal: they sold (bought) more often
than their peers in the simultaneous mechanism when the price was low (high).
Differences between buys and sells in the two mechanisms are significant for the
variations “Low Signal Quality” and “No Player 1”.

Table A1: Acting against one’s own signal: share of buys when signal and price
move in opposite directions

p2 ≤ 130 p2 > 130
s2 > .5 s2 ≤ .5

SEQ .7834 .2357
(.042) (.044)

SIM .8332 .1460
(.036) (.040)

Diff. -.0498 .0877
NSEQ/NSIM 157/136 140/137

LSQ-SEQ .5976 .4323
(.059) (.047)

LSQ-SIM .7326 .1939
(.049) (.044)

Diff. -.135∗ .2383∗∗∗

NSEQ/NSIM 164/187 155/165

NP1-SEQ .6815 .3584
(.049) (.040)

NP1-SIM .8446 .1198
(.045) (.045)

Diff. -.1631∗∗ .2386∗∗∗

NSEQ/NSIM 148/179 173/167
Note: ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01 in two-
sample t test with unequal variances. CRSE in
parentheses. Numbers of observations N depend
on the number of signal price combinations (s2, p2)
within a category and therefore differ.
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Figure A 1: Euclidean distance between estimated bid function of trader 2 and EBR in SIM
and SEQ.

Figure A 1 shows the Euclidean distance between the estimated bid function
of each treatment and the joint EBR function computed using the pooled sample
of participants in the role of trader 1 in SIM and SEQ and signals grouped to
bins of 0.1. As expected, the distance is smaller for extreme and uninformative
signals (si ≈ 0, si ≈ 0.5, si ≈ 1) than for other signals. More importantly, the
distance is always smaller in treatment SEQ than in treatment SIM, showing
that participants in SEQ bid closer to the EBR.
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Figure A 2: Estimated average bids of trader 2 in treatments SIM and SEQ.
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Figure A 3: Estimated average bids of trader 2 in treatments LSQ-SIM and LSQ-SEQ.
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Figure A 4: Estimated average bids of trader 2 in treatments NP1-SIM and NP1-SEQ.
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Figure A 5: Share of naive decisions across treatment variations

34



Table A2: Share of naive decisions (η) for all, high and low signals

All s2 s2 ≤ 0.5 s2 > 0.5

SIM 0.373 0.300 0.448
(0.047) (0.073) (0.065)

SEQ 0.185 0.137 0.228
(0.052) (0.045) (0.064)

Difference 0.188*** 0.163** 0.220***
NSIM/NSEQ 118/108 60/51 58/57
LSQ-SIM 0.445 0.35 0.545

(0.045) (0.049) (0.066)

LSQ-SEQ 0.222 0.254 0.187
(0.033) (0.051) (0.038)

Difference 0.223*** 0.096* 0.358***
NLSQ−SIM/NLSQ−SEQ 227/261 117/138 123/110

NP1-SIM 0.453 0.376 0.556
(0.053) (0.064) (0.082)

NP1-SEQ 0.177 0.148 0.204
(.033) (0.041) (0.052)

Difference 0.276*** 0.228*** 0.352***
NNP1−SIM/NNP1−SEQ 148/181 85/88 63/93

Hyp-SEQ 0.283 0.307 0.25
(0.042) (0. 072) (0.047)

Difference to SEQ -0.098* -0.17** -0.022
Difference to SIM 0.09* -0.007 0.198***
NHyp−SEQ 106 62 44

Note: CRSE in parentheses. One-sided t tests with ***: p<0.01; **: p<0.05;
*: p<0.10. Numbers of observations N depend on the number of signal price
combinations (s2, p2) within the relevant area and therefore vary.

Profits. The difference between simultaneous and sequential mechanisms
also affects the distribution of profits of trader 2. A corresponding difference
occurs in each of the relevant treatment comparisons, but it is economically
small (our experiments were not designed to generate big payoff differences
between treatments) and is statistically significant only in the comparison LSQ-
SIM versus LSQ-SEQ, i.e., with asymmetry in the informativeness of signals.
Less informed traders benefit from sequential information processing, where
the employed updating is more rational. Tables A3 shows mean and median
profits of each treatment. It is also noteworthy that the distribution of profits
conditional on price p2 in LSQ-SEQ is mirror-inverted to the one in LSQ-SIM
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(see Figure A 6b): the majority of traders in LSQ-SIM lose significant amounts,
whereas the majority of traders in LSQ-SEQ make gains. This hints at the
importance of pre-trade transparency to restrain insider trading in real-world
markets. Naive later traders may suffer if they are poorly informed.
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Figure A 6: Kernel density of profits of traders 2 in treatments SIM, SEQ, LSQ-SIM,
LSQ-SEQ and NP1-SIM,NP1-SEQ.

Table A3: Profits of traders 2

Mean S.E. Median
SIM 27.63 2.98 44
SEQ 30.65 2.86 43.25

LSQ-SIM -1.24 3.19 -18.25
LSQ-SEQ .85 3.21 21

HYP-SEQ∗ 27.48 4.30 43.25

NP1-SIM 25.30 2.78 50.5
NP1-SEQ 28.36 2.65 52.5

Note: S.E. refers to standard errors of
mean. ∗Excluding rounds that gener-
ated zero profit in Hyp-SEQ because no
trade occurred.
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A.2 Random utility model by treatment
Table shows the results of the maximum likelihood estimation by treatment
variation.

Table A4: Results of MSL estimation

SIM SEQ LSQ-SIM† LSQ-SEQ NP1-SIM NP1-SEQ Hyp-SEQ
β 1.487 1.267 21.388∗ 5.406∗ 2.335 0.482∗∗ 6.856

(0.82) (0.44) (12.41) (3.31) (2.42) (0.26) (7.16)

α 0.839 1.692∗∗ ≈ 0 2.273∗∗ 0.261∗ 1.726∗∗ 0.615
(0.43) (0.34) (0.002) (0.76) (0.56) (0.32) (1.52)

λ 0.0293∗∗∗ 0.0422∗∗∗ 0.0089∗∗∗ 0.0238∗∗ 0.0245∗∗∗ 0.727∗∗ 0.012∗∗∗
(0.01) (0.01) (0.001) (0.01) (0.007) (0.03) (0.003)

σu 0.0142 0.0067 56.67∗∗∗ 0.0011 0.0112 0.004 0.016
(6.13) (4.20) (15.88) (1.94) (7.13) (2.47) (17.03)

N 720 720 700 680 800 860 620
Note: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Std. Err. in parentheses. Hypothesis testing for β and α
refers to one-sided tests of deviations from 1. †The coefficients for LSQ-SIM are obtained using a constrained
optimization with α, β ≥ 0 since an unconstrained optimization results in technically invalid values of α =
−6.10 (and β = 82.49).

Across all treatments, α, the weight given to price information, is always
considerably lower in the simultaneous than in the sequential mechanism: In
the sequential markets participants put too much weight on the price (α is
significantly larger than 1) whereas in the simultaneous treatments subjects
underweight the informational content of prices. Differences are larger in the
robustness treatments LSQ & NP1; in particular in treatment LSQ-SIM where
subjects assign extremely high and zero weights to the signal and price, respec-
tively. Treatment SIM exhibits reasonable estimates that do not differ from
1. However, we add for completeness that these estimates change substantially
if we estimate the model without the reversed limit orders (α̂ ≈ 0 (0.00009),
β̂ = 2.22 (0.311) , std. err. in parentheses).
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Figure A 7: Bid function for trader 1 given random utility model estimates.

A.3 Learning
To investigate whether participants learn over time, we divide observations into
two time subsections: an early time interval for the rounds one to ten and a late
interval for later rounds. We first checked that there are no significant differences
in traders 1 trading behavior over time, which implies that the empirical best
response of trader 2 is stable. For trader 2, we find only mild evidence that
the sequential variant of the game facilitates learning about the other agents’
private information. In the subset of price-signal realizations where naive and
Bayesian predictions differ, the proportion of naive decisions does not change
significantly over time in all treatments except treatment LSQ-SEQ, as shown
in Table A5. Furthermore, plotting the share or number of naive decisions
across rounds does not display any systematic pattern of decay. Even pooling
treatments into simultaneous and sequential variants does not reveal significant
learning. A random-effects probit regression with reciprocal time trend detects
some experience effects in treatment SIM where subjects bid less naively over
time. Another type of experience effect can be detected in treatment NP1-SEQ
where subjects trade less aggressively after incurring a loss.
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Table A5: Proportion of naive decisions

SIM SEQ LSQ-SIM LSQ-SEQ Hyp-SEQ NP1-SIM NP1-SEQ
First 10 .3971 .2127 .4741 .2810 .3077 .5128 .1596

(.060) (.074) (.052) (.046) (.065) (.070) (.044)
Last 10 .34 .1639 .4144 .1714 .2593 .3857 .1954

(.079) (.058) (.068) (.038) (.057) (.073) (.044)
Diff. .0571 .0488 .0597 .1096∗∗ .0484 .1271 -.0358

N 118 108 227 261 106 148 181
Note:∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01. CRSE in parentheses. Number of observation N depends on the
number of signal price combinations (s2, p2) that realize within the relevant area where predictions differ
and therefore varies.

Table A6: Use of reversed limit orders over time, trader 1

Trader 1 SIM SEQ LSQ-SIM LSQ-SEQ HYP-SEQ

Round 0.047 0.089 0.089 0.038 0.119
1 - 10 (0.018) (0.024) (0.032) (0.017) (0.033)

Round 0.017 0.064 0.06 0.024 0.094
11 - 20 (0.010) (0.026) (0.030) (0.013) (0.036)

Difference 0.030* 0.025 0.029 0.014 0.025
***: p<0.01; **: p<0.05; *: p<0.10. Clustered Robust Standard Errors in paren-
theses.

Table A7: Use of reversed limit orders over time, trader 2

Trader 2 SIM LSQ-SIM NP1-SIM

Round 0.114 0.134 0.078
1 - 10 (0.032) (0.033) (0.025)

Round 0.189 0.194 0.115
11 - 20 (0.052) (0.047) (0.038)

Difference -0.075* -0.060* -0.037**
***: p<0.01; **: p<0.05; *: p<0.10. Clustered Robust
Standard Errors in parentheses.

A.4 Trading volume
Naive beliefs may not only affect prices and profits, but may also trigger spec-
ulative trade (Eyster et al., 2019). Naive traders who receive differential infor-
mation develop different beliefs as they neglect information revealed by trades.
When beliefs are sufficiently divergent, they agree to speculate against each
other and thus generate excessive trade.

We calculate the number of trades that would occur within one treatment
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if traders 2 were allowed to trade with each other (as price-takers). To this
end, we compare the actual buys and sells that took place at each price values,
rounding the latter to the nearest ten. The number of potential transactions
that could have been observed at a given price is given by the minimum of buys
or sells at this price. The number of potential trades is then normalized by
the maximum number of trades. Since every trade requires two trading par-
ties, the maximum number of possible trades at a price equals the frequency of
this price value divided by two. Table A8 shows the share of potential trades,
which corresponds to the ratio of potential trades to the maximum possible
trading volume. The simultaneous mechanisms entail significantly more poten-
tial trades, except for the treatment variation with “Low Signal Quality” that
displays similar shares of trades in each mechanism. This simulation, albeit
simplistic, supports the conjecture that naive traders who neglect disagreement
in beliefs spawn additional trade.

Table A8: Average simulated trading volume with random matching of trader
2 participants

SIM SEQ
Main treatments .8611 .7806∗∗∗

(.004) (.004)
Low Signal Quality .7629 .7735

(.006) (.007)
No Player 1 .87 .6977∗∗∗

(.005) (.003)
∗∗∗: Share is significantly smaller than in
the alternative treatment in a one-sided t-
test with p < .01.
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