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Abstract

Empirical evidence shows that beliefs of households deviate from rational expec-

tations. We develop a model where a household’s beliefs about stock returns are an

endogenous outcome of its location in a bipartite network of households and firms. To

test this model, we establish the relation between households’ beliefs and their portfolio

choices and exploit Finnish data for 125 stocks and the portfolio holdings of 405,628

households. We find that household-firm distance in the network has a statistically

and economically significant effect on household beliefs about firm-level stock returns

implying that geography has a strong effect on beliefs. We calculate the reduction in

household welfare resulting from the deviation of beliefs from rational expectations and

show how this varies depending on the location of households in the network.
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1 Introduction and Motivation

Rational expectations is a mathematically convenient fiction beloved of economists. How-

ever, “the rational expectation hypothesis is strongly rejected” (Landier, Ma, and Thesmar,

2017). This finding necessitates taking a stance on how to deviate from rational expecta-

tions, while still imposing rigor on the manner in which beliefs are formed. In this paper,

we develop a theoretical framework to demonstrate how one can deviate from rational ex-

pectations in a disciplined fashion, and then establish empirically using Finnish data on the

location of firms and the portfolio holdings of households that geography has a strong effect

on beliefs about stock returns.

In the framework we develop, households’ beliefs are derived endogenously based on

their location relative to firms within a bipartite network.1 Networks are ubiquitous in

modern economies: “Networks determine our information, influence our opinions, and shape

our political attitudes” (Acemoglu and Ozdaglar, 2009). Substantial evidence shows that

individuals’ beliefs are biased by location in a broad sense of the term: concrete geographical

neighborhood or a more abstract positional descriptor such as culture, economic status, and

social standing. For example, Das, Kuhnen, and Nagel (2017) show that a person’s socio-

economic status influences their beliefs about macroeconomic variables; Guiso, Sapienza,

and Zingales (2006) describe the direct impact of culture on beliefs; Kuchler and Zafar

(2018) find that when individuals form beliefs about aggregate house prices they overweight

house-price observations from their local area; Shive (2010) and Bailey, Cao, Kuchler, and

Stroebel (2018) find that investors’ expectations are influenced by the experiences of other

people within their social network.2

In our framework, each household regards its benchmark model as an approximation.

Households believe that the data come from an unknown member of a set of models where

firm-level expected returns differ from those in its benchmark model; i.e. each alternative

model is characterized by an alternative probability measure. The household’s concern

1Bipartite networks are a particular class of networks, whose nodes are divided into two sets, and only
connections between nodes in different sets are allowed. For an introduction to the theory of networks, see
the books by Easley and Kleinberg (2010) and Jackson (2010).

2There is also a large complementary literature showing that beliefs are influenced by personal experiences
over time as opposed to location; see, for example, Vissing-Jorgensen (2003), Kaustia and Knüpfer (2008,
2012), Choi, Laibson, Madrian, and Metrick (2009), Greenwood and Nagel (2009), Chiang, Hirshleifer, Qian,
and Sherman (2011), Malmendier and Nagel (2011, 2015), and Knüpfer, Rantapuska, and Sarvimäki (2017).
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about model misspecification induces it to prefer decision rules that work over the set of

alternative probability measures as opposed to one specific probability measure. At the

same time, there is an “information penalty” for deviating from the benchmark probability

measure. The household’s information penalty depends on not just the alternative prob-

ability measure but also on its network location, in contrast with relative entropy.3 For

instance, if the household is located further from a particular firm, this reduces the size of

the information penalty incurred for considering a given alternative probability measure,

implying that the household is willing to consider larger deviations from the reference mea-

sure. Therefore, the further a household’s location from a particular firm, the closer to zero

will be the household’s endogenous personal expectation for the firm’s risk premium (i.e.

the stock return in excess of the risk-free).

We use the network structure to represent the geographical location, which can be inter-

preted to include also cultural, social, and linguistic distance, of each household relative to

firms and use this to derive the beliefs or probability measure of the household. Then, moti-

vated by the “Universal Law of Generalization” developed in Shepard (1987), we model the

effect of distance on beliefs via a negative exponential function. More recently, Sims (2018)

has shown that “the universal law emerges inevitably from any information processing sys-

tem (whether biological or artificial) that minimizes the cost of perceptual error subject to

constraints on the ability to process or transmit information.” Once we have obtained the

endogenous beliefs of individual households, we derive the implications of these beliefs for

the portfolio decisions of each household. Then, in our empirical analysis we exploit this

theoretical link between beliefs, which cannot be observed, and portfolio holdings, which

are observable, to test whether geography influences beliefs.

We consider a model with H heterogeneous households (each with its own beliefs) and

N heterogeneous firms. As in Cox, Ingersoll, and Ross (1985), the physical capital of the N

heterogeneous firms is subject to exogenous shocks. But, in contrast with Cox et al., we have

heterogeneous households with Epstein and Zin (1989) and Weil (1990) preferences coupled

with household-specific beliefs, as described above (and explained in detail below). We solve

3The relative entropy of an alternative probability measure with respect to a benchmark measure is the
standard way of quantifying the change in information when an alternative probability measure replaces
the benchmark measure. As such, relative entropy is based purely on information and ignores network
location. If we were to ignore the influence of network location on the size of the information penalty, then
our framework would reduce to that in Hansen and Sargent (2007).
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this model in closed form and demonstrate how endogenous beliefs impact the portfolio

choices of households. In our model, each household evaluates investment opportunities

using its own personal beliefs, which depend on the household’s location within the network

of firms. Consequently, no household holds the market portfolio; instead, each household’s

portfolio is affected because of its personal beliefs. We then use this model along with data

on the portfolio holdings of Finnish households to infer the effect of geographical distance

on household beliefs about stock returns.

In particular, we test our model of belief formation using Finnish data on the portfolio

holdings in 125 stocks of 405,628 households in 2,923 postal code areas. Using the portfo-

lio holdings of Finnish households to infer their beliefs, we find that geographical distance

between households and firms within the network has a statistically and economically sig-

nificant effect on the beliefs of households about firms’ stock returns. We find that the

sensitivity coefficient representing distance is highly statistically significant in influencing

beliefs in all regressions—univariate regressions, regressions including risk-aversion fixed

effects, regressions including risk-aversion and stock-characteristic fixed effects, and panel

regressions with robust standard errors double clustered at the firm and postal code level.

The results are also economically significant: a one standard deviation decrease in distance

to a firm’s headquarters predicts an effect on beliefs that increases portfolio holdings by a

factor of 2.645. We calculate the reduction in household welfare resulting from the deviation

of beliefs from rational expectations and show how this varies depending on the location of

households in the network.

A possible concern with these results is that they may be driven by households in

Helsinki, the main conurbation in Finland, and there may be differences in behavior be-

tween rural and urban households. To check if this is indeed the case, we run regressions

excluding stocks and postal codes in the Helsinki area and find that the results are still

both statistically and economically highly significant. Another potential concern is that it

may not be geographical distance per se that drives beliefs, but rather employment; i.e.

households may tend to invest in the firms they work for, which are also likely to be close

to where they live.4 To investigate if this is the case, we exclude observations for which the

household and firm headquarters are close to each other (under 8 miles in one specification

4See Cohen (2009) for empirical evidence on how loyalty to a company can influence portfolio choice.

4



and under 24 miles in another specification). We find that the results remain qualitatively

similar, and thus, an “employment” effect does not seem to be driving the results.

Our paper is related to several streams of the literature. The first is the literature on

robust decision making in finance and economics, which is described in Hansen and Sargent

(2007). The key idea we take from this literature is that decision makers are uncertain

about the benchmark model they use to make decisions. Consequently, they consider a

range of models around the benchmark and make decisions that are robust with respect

to the worst-case model. At the same time, there is a penalty for deviating from the

benchmark model. This penalty is the relative entropy of the probability measure for each

model that is considered with respect to the probability measure of the benchmark model.

Trojani and Vanini (2004) study the implications of model uncertainty for portfolio choice in

continuous-time economies with heterogenous investors. Gagliardini, Porchia, and Trojani

(2008) provide an application of robust decision making in the Cox et al. (1985) model to

study the implications for the term structure of interest rates. Bhandari, Borovička, and

Ho (2019) develop a model where agents’ subjective beliefs are endogenous consequences

of model misspecification. Our approach extends this literature by using a penalty that

incorporates network effects, in particular the location of a household relative to firms.

Our paper is therefore related to the literature on networks in economics and finance. A

growing literature explores the implications of network structure for economic variables such

as aggregate fluctuations (Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi, 2012, Gabaix,

2011), systemic risk and financial stability (Acemoglu, Ozdaglar, and Tahbaz-Salehi, 2015,

Farboodi, 2017), systematic risk and asset pricing (Ahern, 2013), return predictability (Co-

hen and Frazzini, 2008), mortgage default risk (Stanton, Walden, and Wallace, 2014, 2018),

merger waves (Ahern and Harford, 2014), information acquisition (Herskovic and Ramos,

2017), and asset pricing implications of information diffusion through networks (Walden,

2019). Allen and Babus (2009) and Jackson (2010, 2014) provide comprehensive surveys

of this literature. Our work contributes to this literature by showing how networks can

influence beliefs.

Finally, empirical tests of our model of belief formation rely on data on portfolio holdings

of households. This aspect of our work is related to the seminal papers of Huberman (2001)

and Grinblatt and Keloharju (2001), who document that households tend to overinvest in
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firms that are “familiar” to them. Huberman (2001) shows that familiarity depends on

geographical distance, and Grinblatt and Keloharju (2001) find that it can depend also

on cultural and language distance.5 There is a large subsequent literature on “local bias”

that documents the tendency of households to overinvest in companies “close” to them.6

Our work contributes to this literature by providing a belief-based microfoundation for

the local bias documented in these papers. We find empirical support for our model, by

testing novel predictions that arise within our framework. For instance, the main regression

tests in Grinblatt and Keloharju (2001) arise naturally in our framework, but their firm

fixed effects now have particular economic interpretations. We show that the firm fixed

effects in their tests represent distributional properties of stock returns (excess return per

unit of variance risk), and postal-code fixed effects represent household preferences (risk

aversion). Our belief-based model for their, and our, results is supported by the positive

relation between the estimated excess return per unit of variance risk and out-of-sample

firm performance. Novel empirical findings consistent with our model are the strong overlap

between portfolio holdings of households within the same postal code and the strong relation

between proximity and positive total portfolio holdings of a stock at the postal code level.

The rest of this paper is organized as follows. We describe the main features of our

model in Section 2. The choice problem of an individual household with subjective beliefs

is solved in Section 3. We evaluate the predictions of the model empiricallly in Section 4.

We conclude in Section 5. Proofs for all results and additional empirical results are reported

in the appendices.

5Lindblom, Mavruk, and Sjögren (2018) find that, in addition to local bias, individual investors who live
in their birthplace invest almost three times more in local firms than other locals. Laudenbach, Malmendier,
and Niessen-Ruenzi (2018) demonstrate that even decades after reunification, East Germans still invest
significantly less in the stock market and are more likely to hold stocks of companies in communist countries
(China, Russia, Vietnam), and less likely to invest in American companies and the financial sector.

6Massa and Simonov (2006) find evidence that households bias their portfolio toward stocks that are
geographically or professionally close and argue that this bias is information driven. In contrast, Seasholes
and Zhu (2010), Døskeland and Hvide (2011), Baltzer, Stolper, and Walter (2013, 2015) find that while
portfolios are indeed biased toward local stocks, the local holdings do not generate abnormal performance.
Bodnaruk (2009) provides compelling evidence of the effect of geographical distance by showing that as
households change their place of residence, and thereby the distance from the companies in which they invest,
they also adjust their portfolio weights. In contrast to the studies that focus on individual households, Coval
and Moskovitz (1999a,b) study professional fund managers and find that they also bias their holdings toward
local stocks and earn abnormal returns from nearby investments. Pool, Stoffman, and Yonker (2012) also
study professional U.S. mutual-fund managers and find that they bias their portfolios toward stocks from
their home states; however, home-state stocks do not outperform other holdings, suggesting that home-state
investments are not informed.
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2 The Model

In this section, we develop a model of a finite number of firms and households in a stochastic

dynamic equilibrium economy. The location of a household relative to all firms in the

economy is described by a network structure. The beliefs of a household are determined by

its location within the network and the network itself.

2.1 Firms

There are N firms indexed by n ∈ {1, . . . , N}. The value of the capital stock in each firm

at date t is denoted by Kn,t and the output flow by

Yn,t = αnKn,t,

for some firm-specific technology level αn > 0. The level of a firm’s capital stock can be

increased by investment at the rate In,t. We thus have the following capital accumulation

equation for an individual firm:

dKn,t = In,t dt+ σnKn,t dZn,t,

where σn, the volatility of the exogenous shock to a firm’s capital stock, is constant. The

term dZn,t is the increment in a standard Brownian motion and is firm-specific; the corre-

lation between dZn,t and dZm,t for n 6= m is given by 0 < ρ < 1, which is also assumed to

be constant over time and the same for all pairs n 6= m. Firm-specific shocks create het-

erogeneity across firms. The N ×N variance-covariance matrix of returns on firms’ capital

stocks is given by V = [Vnm] and Ω denotes the correlation matrix, where the elements of

these two matrices are

Vnm =

{
σ2
n, n = m,

ρnmσnσm, n 6= m,
and Ω =

{
1, n = m,
ρnm, n 6= m.

A firm’s output flow is divided between its investment flow and dividend flow:

Yn,t = In,t +Dn,t.

We can therefore rewrite the capital accumulation equation as

dKn,t =
(
αnKn,t −Dn,t

)
dt+ σnKn,t dZn,t.
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In the Cox et al. (1985) model, the expected return on a firm’s physical capital, αn, equals

the return on its stock. Similarly, the volatility of the return on a firm’s capital, σn, equals

the volatility of the return on its stock.

2.2 The Investment Opportunities of Households

There are H households, indexed by h ∈ {1, . . . ,H}. Households can invest their wealth

in two classes of assets. The first is a risk-free asset, which has an interest rate i that we

assume is constant over time, which then implies that the investment opportunity set is

constant over time. Let Bh,t denote the stock of wealth invested by household h in the

risk-free asset at date t. Then, the change in Bh,t is given by

dBh,t
Bh,t

= i dt.

Additionally, households can invest in the N risky firms, or equivalently, in the stocks

of these N firms. We denote by Khn,t the stock of household h’s wealth invested in the nth

risky firm. Given that the household’s wealth, Wh,t, is invested in the risk-free asset and

the N risky firms, we have that:

Wh,t = Bh,t +
N∑
n=1

Khn,t.

The proportion of a household’s wealth invested in firm n is denoted by ωhn, and so

Khn,t = ωhnWh,t,

so that the amount of household h’s wealth invested in the risk-free asset is

Bh,t =
(

1−
N∑
h=1

ωhn

)
Wh,t.

The dividends distributed by firm n are consumed by household h according to share

of firm n that household h holds:

Chn,t = Dhn,t =
Khn,t

Kn,t
Dn,t,
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where Chn,t is the consumption rate of household h from the dividend flow of firm n. Hence,

the dynamic budget constraint for household h is given by

dWh,t

Wh,t
=
(

1−
N∑
n=1

ωhn,t

)
idt+

N∑
n=1

ωhn,t

(
αndt+ σndZn,t

)
−
Ch,t
Wh,t

dt,

where Ch,t is the consumption rate of household h and Ch,t =
∑N

n=1Chn,t.

2.3 Network Structure

We endogenize household beliefs by linking them to the proximity of a household to each

firm in the economy. That is, beliefs are the consequence of differences in locations across

households, which we represent via a network structure. First, we explain the underlying

network structure. Second, we show how household beliefs are modeled. Third, we show

how household beliefs are impacted by their location within a network.

The separation of household h from firm n is denoted by dhn. This could be a geo-

graphical distance or a more abstract measure of separation, such as cultural or linguistic

distance. For example, an English-speaking household would be “more distant” from a

German company located in Germany, than a German-speaking household that is located

on the same street as the English-speaking household.

Shepard (1987) has proposed a “Universal Law of Generalization,” which is one of the

key psychological laws governing human cognition. This law states that the probability of

distinguishing between two items, a and b, is a negative exponential function of the distance

d(a, b) between them in a psychological Euclidean space. This law is based on experiments

where humans are presented with stimuli Sa, Sb, . . ., about a set of items a, b, . . ., and their

response (typically having to identify the item) is given by Ra, Rb, . . .. The stimulus Sa

should evoke response Ra but with some probability can evoke response Rb where b 6= a;

that is, item b is confused with item a. According to the universal law, the probability of

this, Pr(Rb|Sa), is proportional to e−d(a,b). Shepard then shows that this law is consistent

with empirical observations in a variety of contexts including having to distinguish among

linguistic phonemes, circles of different sizes, and spectral hues. Motivated by these findings,

we also specify a negative exponential function to model the effect of distance on portfolio

choice.
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Figure 1: First example of network

In this figure, we assume that the number of firms is equal to the number of households, N = H = 4,
and that each household has a separation measure of d ∈ (0, d) with respect to 2 firms and a
separation measure of d+ ε, where ε > 0 with respect to all other firms.

n1

n2

n3

n4

h1

h2h3

h4

We map the measure of separation, dhn, into a measure of proximity using a negative

exponential function, φhn, which is constrained to lie in the interval [0, 1], by using the

following specification

φhn =

{
e−κdhn , dhn ≤ d,

0 , dhn > d,
(1)

where κ ≥ 0 is a measure of the sensitivity of φhn to dhn and d is a constant denoting some

threshold value. Thus, φhn = 1 when the separation measure for household h relative to

firm n is 0 and φhn = 0 when the separation measure for household h relative to firm n

exceeds the threshold d. Note that both κ and d are common across all households.

In contrast with most existing work in finance, where a network consists of agents of

one type, we have a network consisting of two types: households and firms. Such a network

is known as a bipartite network. In our case, the bipartite network of households and firms

is described via the H by N matrix D, where

D = [dhn]hn, h ∈ {1, . . . ,H}, n ∈ {1, . . . , N}.

The matrix D is called the biadjacency matrix of the bipartite network. From the biadja-

cency matrix of separation measures for household h, we obtain the proximity matrix

Φ = [φhn]hn, h ∈ {1, . . . ,H}, n ∈ {1, . . . , N}.

Below, we provide two examples of bipartite networks. In our first example, illustrated

in Figure 1, we assume the number of households equals the number of firms (H = N) and

that each household has a separation measure of d ∈ (0, d) with respect to 2 firms and a
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separation measure of d + ε, where ε > 0 with respect to all other firms. Let the firms be

arranged in a circle, and let each household h be equally distant from the two firms nearest

to it on either side. Thus, in this case the biadjacency matrix of separation measures is

given by the following N by N matrix

D =


d d d+ ε d+ ε · · · d+ ε

d+ ε d d d+ ε · · · d+ ε
... · · · · · · · · · · · ·

...

d+ ε d+ ε · · · d+ ε d d

d d+ ε · · · d+ ε d+ ε d

 .

Hence, defining φ = e−κd, the matrix of proximity measures is given by

Φ =


φ φ 0 0 · · · 0
0 φ φ 0 · · · 0
... · · · · · · · · · · · ·

...
0 0 · · · 0 φ φ
φ 0 · · · 0 0 φ

 .

In our second example, observe Figure 2 below, which shows a map of Finland (in cyan)

decomposed into 3036 postal code regions. (We will undertake a more detailed analysis of

this data in our empirical tests in Section 4.) For the purpose of this example, consider

the five red squares that represent five households situated at the points p1, . . . , p5, and the

three blue circles that represent three firms situated at p1, p2 and p3.

Geographical distance is used to define the firm-household network, so that

dhn = D((xh, yh), (xn, yn)) =
√

(xh − xn)2 + (yh − yn)2,

where the Euclidean distance function D is normalized so that the two postal codes that are

farthest away from each other (postal codes 2 and 3) are at unit distance, and ph = (xh, yh),

pn = (xn, yn).

The constant is κ = 0.9, and the threshold is set to d̄ = 0.5. This leads to the following

matrix of proximity measures

Φ =


0.771 0.852 0.905
0.770 0 0

0 0 0.850
0.720 0 0.736
0.676 0 0

 .
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Figure 2: Second example of network

In this figure, we assume that the number of firms N = 3, with these firms represented by the three
blue circles and the number of households is H = 5, with these households represented by the five
red squares. The underlying map (in cyan), shows 3,036 Finnish postal code regions, obtained from
the Finnish postal services company, Posti Group Corporation.

The proximity function is the highest for household 1 and firm 3 (φ13 = 0.905), because they

represent the geographically closest household-firm pair. There are in total eight household-

firm connections; the remaining firm-household pairs are farther apart than the threshold

d̄ = 0.5, and therefore, are not connected.

To show the flexibility of our framework, we also consider a variation of this example

with a more general distance function. We now specify that the distance function is affected

not only by geographical distance, but also cultural distance, as suggested in Grinblatt and

Keloharju (2001). Culture could, for example, be measured by the main language spoken by

the firm’s CEO. Assume that the CEOs’ main language is represented by `n ∈ {0, 1}, where

0 represents a Swedish-speaking CEO and 1 a Finnish-speaking CEO. We shall assume

that `1 = `2 = 1, and `3 = 0. Also, assume similarly that `h ∈ {0, 1} represents the

predominant language spoken by households in the different postal codes. We shall assume

that `1 = `4 = 0, while `2 = `3 = `5 = 1.
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Then the generalized distance function takes the form dhn = d(ph, p
n)+c|`h−`n|, where

the constant c = 0.25, leading to the following matrix of proximity measures

Φ =


0 0.680 0.905

0.770 0 0
0 0 0.679
0 0 0.736

0.676 0 0

 .

With the generalized distance function, the connections between firm 1 and households 1

and 4 no longer exist, φ11 = φ41 = 0, because the effect of their cultural distance is to

increase the distance beyond the threshold d̄ = 0.5. The connections φ12 and φ31 also

decrease, from 0.852 to 0.680 and from 0.850 to 0.679, respectively, but stay positive, i.e.

the connections remain.

2.4 Beliefs of Households

Each household h has its own beliefs, represented by its personal probability measure Qνh ,

which differs from the physical (objective) probability measure P. We define the beliefs of

household h below.

Definition 1. If we consider an event A which can occur at time T > t, household h’s

personal expectation that event A could occur, conditional on date-t information, is given

by

EQνh

t [IA] = EP
t

[
Mh,T

Mh,t
IA

]
, (2)

where IA is the indicator function associated with event A, and Mh,t is an exponential

martingale (the Radon-Nikodym derivative of Qνh with respect to P) defined by

dMh,t

Mh,t
= ν>h,t(ΩΣ)−1dZt,

where Σ = diag(σ1, . . . , σN ), Zt = (Z1,t, . . . , ZN,t)
>, and

νh,t = (νh1,t, . . . , νhN,t)
> (3)

is the vector of divergences of household expectations from rational expectations.

To understand the intuition behind the above definition, observe that in equation (2)

multiplication by the exponential martingale changes the expected rate of return for firm
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n’s stock from α under the measure P to αn + νhn,t under household h’s measure, Qνh .

Thus, the divergence in household h’s beliefs about the expected rate of return on firm n

(relative to the physical probability measure) is νhn. Consequently, household h’s personal

belief about the expected rate of return on its wealth is
∑N

n=1 ωhn,t(αn + νhn,t) instead of∑N
n=1 ωhn,tαn, a change of

∑N
n=1 ωhn,tνhn,t relative to the physical measure P, which we can

write more succinctly as ω>h,tνh,t, where ωh,t = (ωh1,t, . . . , ωhN,t)
> is the column vector of

portfolio weights and νh,t, defined in equation (3), is the vector of personal divergences of

household h for all N firms.7 Only in the special case where household h’s vector of personal

divergences is the zero vector do its beliefs coincide with the objective beliefs represented

by P, and therefore, we have rational expectations.

In Definition 1, the only source of different beliefs between households is the vector of

divergences, νh,t, which will be determined by a household’s location. As a consequence,

households in the same location will be predicted to hold identical portfolios. Moreover,

as we shall see, households will neither overinvest nor shortsell stocks. These features are,

of course, inconsistent with what is observed in practice, and are easily avoided with an

extended specification. Specifically, we may replace Mh,t in Definition 1 with the process

dMh,t

Mh,t
= (νh,t + ξh)>(ΩΣ)−1dZt,

where

ξh = (ξh1, . . . , ξhN )>,

and ξhn are random variables with mean zero, i.i.d. across agents and stocks. The additional

variation in individual household’s expectations introduced by this extension generates fur-

ther heterogeneity in individual household beliefs and holdings, but cancels out in aggregate

in markets with many households. For simplicity, we use the base specification in the forth-

coming derivation; the derivation under the extension is very similar.

We now use the vector of household expectations to define the network-weighted infor-

mation loss of an individual household.

7From Girsanov’s Theorem, we know that choosing a vector of personal divergences is equivalent to a
household changing the objective physical measure to a new measure, denoted by Qνh .
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Definition 2. The network-weighted information loss for household h is given by

L̂h,t = ν>h,tΣ
−1FhΣ−1νh,t =

N∑
n=1

φhn
1− φhn

ν2
hn,t

σ2
n

, (4)

where Fh is the N ×N diagonal matrix

Fh = diag

(
φh1

1− φh1
, . . . ,

φhN
1− φhN

)
, φhn ∈ [0, 1], n ∈ {1, . . . , N}. (5)

To understand the motivation underlying the above definition, observe that in (4) we

can interpret ν2
hn,t/σ

2
n as a measure of the information about firm n that is discarded by

household h when it uses its personal belief Qνh as opposed to the objective belief P. We then

weight each of these information losses by φhn
1−φhn . Doing so ensures that an information loss

impacts L̂h,t only when a household’s proximity with respect to a particular firm is not zero

and that the impact of the information loss increases with proximity and becomes infinitely

large when φhn = 1, i.e. when the separation measure is 0. In this manner, a household’s

location within a network structure determines its network-weighted information loss.

Our definition of a household’s network-weighted information loss is closely related to

the relative entropy per unit time of the objective belief P with respect to the personal

belief Qνh (also known as the Kullback-Leibler divergence from Qνh to P). Observe that

the relative entropy per unit time of the objective belief P with respect to the personal

belief Qνh is given by

DKL[P|Qνh ] =
1

dt
Et

[(
dMh,t

Mh,t

)2
]

= ν>h,tΣ
−1[(Ω)−1]>Σ−1νh,t. (6)

In the above expression for relative entropy, we can see that when firm-level information

losses are summed up, they are weighted by the correlation matrix for stock returns, Ω. In

contrast, our definition of a household’s network-weighted information loss in (4) uses the

household’s location in the bipartite network of firms and households, given by the matrix

Fh defined in (5), to weight the information losses.

2.5 Intertemporal Aggregator with Endogenous Beliefs

Each household maximizes its date-t utility level, Uh,t, defined as in Epstein and Zin (1989)

by an intertemporal aggregation of date-t consumption flow, Ch,t, and the date-t personal
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certainty-equivalent of date t+ dt utility:8

Uh,t = Ah(Ch,t, µ
ν
h,t[Uh,t+dt]),

where Ah(·, ·) is the time aggregator, defined by

Ah(x, y) =
[
(1− e−δhdt)x1− 1

ψh + e−δhdty
1− 1

ψh

] 1

1− 1
ψh , (7)

in which δh > 0 is the rate of time preference, ψh > 0 is the elasticity of intertemporal

substitution, and µνh,t[Uh,t+dt] is the date-t personal certainty equivalent of Uh,t+dt.

We now use the concepts of a household’s beliefs and its network-weighted information

loss to define its personal certainty-equivalent, which is fundamental to how we endogenize

belief formation as a function of household location within the network structure.

Definition 3. The date-t personal certainty-equivalent of date-t + dt household utility is

given by

µνh,t[Uh,t+dt] = µ̂νh,t[Uh,t+dt] + Uh,tLh,tdt, (8)

where µ̂νh,t[Uh,t+dt] is defined by

uγh
(
µ̂νh,t[Uh,t+dt]

)
= EQνh

t [uγh (Uh,t+dt)], (9)

uγh(x) =
x1−γh

1− γh
, and

Lh,t =
1

2γh
L̂h,t.

The first part of the definition of the personal certainty-equivalent in (8) is just the

standard definition of a certainty-equivalent based on power utility with relative risk aversion

γh, but using the personal belief Qνh . The second part of the definition hinges on the

expression for Lh,t, which is a multiple of the network-weighted information loss from using

the personal belief Qνh instead of the objective belief P.

When a household chooses its beliefs by choosing a vector of divergences νh,t, it does

so in order to minimize the impact of its information losses on its personalized certainty

8The only difference with Epstein and Zin (1989) is that we work in continuous time, whereas they work
in discrete time. The continuous-time version of recursive preferences is known as stochastic differential
utility (SDU), and is derived formally in Duffie and Epstein (1992). Schroder and Skiadas (1999) provide a
proof of existence and uniqueness for the finite horizon case.
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equivalent. The following proposition and corollary show how a household optimally selects

its personal beliefs by choosing a vector of divergences, νh,t.

Proposition 1. The date-t personal certainty equivalent of date-t + dt household utility

based on the personal belief Qνh is given by

µνh,t[Uh,t+dt] = µh,t[Uh,t+dt] + Uh,t ×
(
Wh,tUWh,t

Uh,t
ν>h,tωh,t + Lh,t

)
dt, (10)

where

µh,t[Uh,t+dt] = Et[Uh,t+dt]−
1

2
γh Uh,tEt

[(
dUh,t
Uh,t

)2
]

(11)

UWh,t
=

∂Uh,t
∂Wh,t

is the partial derivative of household h’s utility with respect to its wealth

and Et denotes the conditional expectation at t under the reference measure. At date t,

a household optimally selects its personal belief Qνh by choosing the vector of personal

divergences νh,t which minimizes its date-t personal certainty equivalent, µνh,t[Uh,t+dt].

The presence of the term
Wh,tUWh,t

Uh,t
ν>h,tωh,t in (10) gives a household the desire to make

its divergences in portfolio-return expectations, i.e. ν>h,tωh,t, as negative possible. This desire

is clearly a departure from rationality, but it is tempered by the size of its network-weighted

information losses, represented by Lh,t. For example, in the special case where φhn = 1 for

all n ∈ {1, . . . , N}, the network-weighted information losses from any divergences become

infinitely large, so a household chooses not to have any personal divergences, i.e. νh,t is the

zero vector. In this case, its personal certainty equivalent reduces to the standard certainty

equivalent under rational expectations, i.e. a mean with a penalty for risk that depends on

risk aversion γh and variance, as given in (11).

In general, network-weighted information losses are not infinitely large, and so a house-

hold faces a trade off between more negative personal divergences in portfolio return expec-

tations and larger network-weighted information losses. Because this optimization problem

is linear-quadratic it has the following closed-form solution.

Corollary 1. A household’s personal divergence vector is given by

νh,t = −γh
Wh,tUWh,t

Uh,t
(Σ−1FhΣ−1)−1ωh,t, (12)
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with each element being

νhn,t = −γh
Wh,tUWh,t

Uh,t
σ2
n

1− φhn
φhn

ωhn,t.

We can now see how network location affects households’ expectations. When a house-

hold’s proximity φhn to a firm is low, it responds by biasing downwards its point estimate

for the expected return for that firm. For example, household h will change the expected

return for firm n from α to α+νhn,t, thereby reducing the magnitude of the firm’s expected

risk premium (νhn,t ≤ 0 if ωhn,t > 0 and νhn,t ≥ 0 if ωhn,t < 0). The size of the reduction

depends on each household’s proximity to a particular firm—the reduction is smaller for

firms to which the household is closer. Thus, differences in proximity φhn across households

lead them to use different estimates of expected returns in their decision making.

3 Portfolio-Consumption Choice with Endogenous Beliefs

In this section, we solve the portfolio problem of an individual household whose beliefs are

determined endogenously by its network location.

If a household’s beliefs coincided with the objective physical measure, it would choose

its consumption rate, Ch,t, and portfolio policy, ωh,t, to solve the standard choice problem,

which is:

sup
Ch,t

A
(
Ch,t, sup

ωh,t

µh,t[Uh,t+dt]
)
, (13)

where µh,t[Uh,t+dt] is the standard certainty equivalent, given in (11).

In general, with endogenous household beliefs that do not coincide with rational ex-

pectations, the time aggregator A(·) in (7) is unchanged—all we need to do is to re-

place the maximization of the standard certainty-equivalent in (13), supωh,t µh,t[Uh,t+dt],

with the combined maximization and minimization of the personal certainty equivalent,9

9Our max-min characterization of the objective function is consistent with the multi-prior approach ad-
vocated by Gilboa and Schmeidler (1989) and developed in a static setting by Dow and Werlang (1992), in
dynamic discrete-time by Epstein and Wang (1994), and in continuous time by Chen and Epstein (2002).
The alternative approach of Hansen and Sargent (2007), which our formulation builds on, assumes that
investors allow for the possibility that their model may not be correct and hence consider deviations from
the reference model, where the relative likelihood of the two models is measured using entropy; these pref-
erences are called multiplier preferences. Maccheroni, Marinacci, and Rustichini (2006) show the relation
between multiple-priors and multiplier preferences; they also show that both are nested in a larger class
called “divergence preferences.” Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2011) provide a
common representation that unifies these preferences.
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supωh,t infνh,t µ
ν
h,t[Uh,t+dt] to obtain

sup
Ch,t

A
(
Ch,t, sup

ωh,t

inf
νh,t

µνh,t[Uh,t+dt]
)
. (14)

A household, because of the impact of its network location, chooses νh,t to minimize its

personal certainty equivalent. By comparing (13) and (14), we can see that once a household

has chosen the vector of personal divergences, νh,t, to adjust the expected returns of each

firm to account for its beliefs, it makes consumption and portfolio choices in the standard

way.

To solve a household’s consumption-portfolio choice problem under subjective beliefs

we use Ito’s Lemma to derive the continuous-time limit of (14), which leads to a Hamilton-

Jacobi-Bellman equation that is given in the appendix. The appendix also shows that

the Hamilton-Jacobi-Bellman equation can be decomposed into a portfolio-optimization

problem and an intertemporal consumption-choice problem. Given that the investment

opportunity set is constant over time, the maximized household utility is a constant multiple

of the household’s wealth, which allows us to get the following simple expressions for the

choice variables of the household.

Proposition 2. The optimal vector of personal divergences is

νh = −(I + V FhΣ−2)−1(α− i1), (15)

and the vector of optimal portfolio weights is

ωh,t =
1

γh
V −1

(
α− i1 + νh

)
=

1

γh
(V + Σ2F−1

h )−1
(
α− i1

)
. (16)

For the special case in which the correlation between assets ρnm = 0, the optimal diver-

gence in household h’s expected return for firm n is

νhn = −(αn − i)(1− φhn), (17)

and the optimal proportion of wealth invested in firm n by household h is

ωhn =
1

γh

αn − i+ νhn
σ2
n

=
1

γh

αn − i
σ2
n

φhn. (18)
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From (17), we can see that the size of a household’s deviation in a firm’s expected

return is smaller when the proximity measure, φhn, is larger; if φhn = 1, then the deviation

vanishes altogether and the household holds the portfolio weight that would be optimal

under rational expectations. From (18), we see that the standard mean-variance portfolio

weight for firm n, 1
γh

αn−i
σ2
n

, is scaled by the proximity measure for household h with respect to

firm n, φhn. As a household’s proximity measure with respect to a particular firm decreases,

the proportion of its wealth that it chooses to invest in that firm also decreases.

In summary, when a household is further away from a firm (a reduction in proximity),

its beliefs about the firm’s return diverge more from the objective physical expectation;

hence, it tilts its portfolio away from the one under rational expectations.

Our portfolio weight specification in equation (18) is similar to that estimated using

panel regressions in Grinblatt and Keloharju (2001). Our specification provides additional

insight about how to interpret the firm and location fixed effects in those regressions: The

firm fixed effects represent distributional properties of stock returns, and the location fixed

effects represent risk aversion, which we will measure at the postal code level. Our model

thereby provides a microfoundation for the empirical tests and results in Grinblatt and

Keloharju (2001).

It is straightforward to show that under the extended specification, which allows for

idiosyncratic variation in household beliefs, equation (18) becomes

ωhn =
1

γh

αn + ξnh − i
σ2
n

φhn.

This specification thus allows for variation in portfolio holdings across households at the

same location (with the same φhn), with some choosing higher weights than 1
γh

αn−i
σ2
n

(those

with ξhn sufficiently high), and for some to shortsell stock (those with ξhn sufficiently low).

4 Empirical Results

Our belief-based portfolio-choice model leads to several testable predictions. These predic-

tions follow immediately from our earlier results, and therefore, are presented below without

formal proofs.
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4.1 Testable Predictions

In our model, households will tend to be underdiversified in that they will hold only a subset

of the stocks in the market (those at a distance smaller than d̄). The effect will be especially

severe for households that are located far away from firms.

Prediction 1. The portfolio of a household located far away from firms is more under-

diversified—i.e. contains fewer stocks—than the portfolio of a household located close to

firms.

A related prediction is that the stocks in a household’s portfolio will be located closer to

the household than stocks that are not part of the household’s portfolio.

Prediction 2. The distances from a household to firms that are included in the household’s

portfolio are lower than the distances to firms that are not included in the portfolio.

The previous predictions relate a household’s portfolio to the locations of firms. Our

model also predicts that households which are located close to each other hold similar

portfolios.

Prediction 3. The portfolios of two nearby households contain more common stock con-

stituents than if these constituents were randomly selected among the market’s stocks.

We next turn to the full portfolio implications of the specification in equations (1)

and (18). Specifically, the sensitivity parameter κ, which is common across all households,

determines how distance affects household beliefs. The higher is κ, the more households

focus on companies in their network vicinity, whereas when κ = 0, as long as the distance

is less than d̄, beliefs and portfolios are unaffected.

We define gh = ln(γh), vhn = ln(ωhn), and sn = ln
(
αn−i
σ2
n

)
, which from (18) then implies

vhn = −gh + sn − κ dhn. (19)

Equation (19) provides a strong characterization of the portfolio holdings of individual

agents, as a function of relative risk aversion coefficients, stock return characteristics, and

distance. Given data on portfolio holdings of the households in a market, {ωhn}hn, together

with location parameters, {(xh, yh)}h and {(xn, yn)}n, equation (19) can be estimated and

the following prediction can be tested
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Prediction 4. The coefficient κ in equation (19) is strictly positive, κ > 0.

In this estimation, {gh}h and {sn}n are treated as (unobservable) household and firm

fixed effects, respectively, both with clear economic interpretations. In particular, the esti-

mated firm fixed effects should be related to the actual return distribution of stocks.

Prediction 5. The firm fixed effects coefficients obtained when estimating equation (19)

should be informative about

ln

(
αn − i
σ2
n

)
, n = 1, . . . N.

Prediction 5 could potentially be used to separate our belief-based explanation for local

bias from other reduced-form explanations, which would directly specify a positive relation

between proximity and portfolio holdings. For example, a specification of portfolio holdings,

ωh,n = F(γh, dh,n, fn), where γh represents individual household characteristics, and dh,n

distance, and fn firm characteristics unrelated to return distributions would not in general

lead to the relation described in Prediction 5.

In the rest of this section we test Predictions 1–5. In Section 4.2, we describe the data.

The results of our empirical analysis are reported in Section 4.3 and various robustness

checks are described in Section 4.4.

4.2 Data

We obtained portfolio holdings for all accounts on the Helsinki Stock Exchange, as of Jan-

uary 2, 2003, from Euroclear, which acquired the Finnish Central Securities Depositary in

2008.10 The data contain portfolio holdings and postal-code information, as well as further

characteristics (age and gender and sector code classification) of all account holders in the

market. There are altogether 3,036 valid postal codes in the data set and the data contains

over 60 million trades during the time period 1995-2004, and about 1.2 million accounts,

most of which represent the household sector.

We obtain geographical coordinates for each postal code area from the Finnish postal

services company, Posti Group Corporation. These postal codes make up a fine-grained

10The dataset has previously been used, e.g., in Grinblatt and Keloharju (2000, 2001) and Walden (2019).
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representation of Finland, as shown earlier in Figure 2. We represent each postal code

geographically by its center of gravity.

We obtain information about the postal codes of company headquarter from Thomson

One Reuters and exclude companies headquartered outside of Finland. We also exclude

companies with shares that were not traded within the previous month (i.e. during December

2002). Finally, we exclude the telecommunications company Elisa Oyj, which had until

1999 been a privately held mutual association with broad ownership among its association

members, and therefore had a quite different ownership history and structure than the rest

of the firms.11 This leaves us with 125 stocks, which are listed in Table D1 of Appendix D.12

We include accounts that are classified as households (these are accounts associated

with sector codes between 500 and 599), that are associated with a valid postal code, and

that owned shares in at least one of the 125 stocks on January 2, 2003. This leaves us with

405,868 households associated with altogether P = 2, 923 postal codes.

The postal code associated with household h is denoted ph. We assume that each agent

resides at the center of gravity of his/her respective postal code and also that each firm is

headquartered at the center of gravity of its postal code. Thus, all agents within a postal

code are assumed to be at the same distance from each of the firms. We can then rewrite

equation (19) at the postal-code level as

vpn = −ḡp + sn − κ dpn, (20)

ḡp = ln(γ̄p),
1

γ̄p
=

∑
{h:ph=p}

1

γh
,

where γ̄p is the harmonic mean of the relative risk aversion coefficients for agents living in

postal code p, and dpn is the distance between the center of gravity of postal code area p,

11Elisa Oyj was formed on July 1, 2000, with the merger of the Helsinki Telephone Corporation (in Finnish,
“Helsingin Puhelin”) and its holding company, HPY Holding Corporation. Helsinki Telephone Corporation
had been a privately held telephone cooperative with broad ownership among its 550,000 “association mem-
bers.” Subscribers to its telephone services automatically became association members. When the company
was listed on the Helsinki Stock Exchange in 1997, these owners became shareholders, which then carried
over to Elisa Oyj after the merger (Source: Annual Reports, 1997-2000). Most of these shareholders only
held this one stock, and thus seem to be shareholders for different reasons than the rest of the household
investor population. Except for predictions 1 and 3, on underdiversification and similarity of holdings of
individual households, the results are very similar when Elisa Oyj is included.

12Some of these stocks represent A and B shares in the same company. An A share in Finland typically
come with greater voting rights compared with a B share. There were significant differences in share prices
and returns between A and B shares of the same companies and we therefore include both A and B shares
in our sample for companies with both types of shares.
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(xp, yp), and the center of gravity of the postal code area in which firm n is located,

dpn = D((xp, yp), (x
n, yn)).

Equation (20) thus consists of P ×N postal code/company holdings.

We focus on geographical proximity as a measure of network proximity between agents

and companies. As discussed in Walden (2019), this is a reasonable assumption for the

time period and market that the data covers. One might view geographical distance as an

unimportant hurdle in the present time due to almost universal access for households to

information via the Internet. However, only about one third of the Finnish population used

the Internet in 2000. Moreover, over half of Finland’s population resides in rural areas,

making it one of the most rural countries in the European Union. It is therefore plausible

that there would be a significant link between geographical and network proximity in the

early 2000’s.

We normalize the distance function, so that all geographical coordinates lie in the unit

square, [0, 1]× [0, 1]. The household-firm that are farthest apart are therefore at a distance

somewhere between 1 and
√

2 from each other (in our sample, the maximum distance is

1.175), making the interpretation of the sensitivity coefficient κ in equation (20) straight-

forward.

The geographical coordinates of postal codes (blue small dots) and firms (red large

circles) are shown in Figure 3. As can be seen in the figure, most firms are headquartered

in the far south (around the capital, Helsinki, with associated postal codes between 100 and

9900), whereas about 20% of the firms have headquarters elsewhere. Summary statistics of

the data we use are provided in Table 1.

4.3 Results

We first test Prediction 1, that households tend to be more under-diversified the farther

away they are located from stocks. We define the center of gravity (CoG) of the stocks,

(xC , yC) =
1∑N

n=1W
n

(
N∑
n=1

Wnxn,
N∑
n=1

Wnyn

)
,

where we use both equally-weighted CoG (Wn = 1 for all firms) and value-weighted CoG,

(a firm’s weight is defined as the total value of household portfolio holdings in that firm).
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Figure 3: Center of gravity of postal codes for households and firms

Center of gravity of postal codes for households (blue dots) and firms (red circles) in dataset.
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Table 1: Summary statistics

This table gives the summary statistics for the data used in our empirical analysis.

Number of stocks 125
Number of household accounts 405,628
Number of postal codes 2,923
Average number of accounts in postal code 139
Total number of observations 364,750
Number of nonzero observations 132,811
Maximum portfolio holding FIM 178.7 million
Minimum portfolio holding FIM 0
Average stock holding by postal code FIM 30,617
Median number of stocks held by account 2
Mean number of stocks held by account 2.75

We further define qp, the average number of stocks in households’ portfolios within postal

code area p, and dp = D((xp, yp), (x
C , yC)), the distance between households in postal code

area p and firm CoG, and estimate how they are related. The relation, shown in Table 2,

25



Table 2: Test of Prediction 1: Underdiversification versus distance from firms

This table shows how the average number of stocks held by households in a postal code are is related to the
distance of the postal code to firm center-of-gravity (CoG), dp. Columns (1) and (2) use an equally-weighted
definition of CoG, whereas columns (3) and (4) use a value-weighted definition. Univariate regressions are
used in columns (1) and (3), and bivariate regressions, also including log-average portfolio size, ln(Wp), are
used in columns (2) and (4).

(1) (2) (3) (4)

Distance, dp −1.011*** −0.306*** −1.024*** −0.313***
Standard error 0.084 0.072 0.082 0.070

Portfolio size, ln(Wp) 0.446*** 0.445***
Standard error 0.012 0.012

is significantly negative, both economically and statistically. A household located at a

maximum distance from the firms’ CoG is predicted to hold about one fewer stock in its

portfolio than a household located right at the CoG—a major effect because the median

number of stocks held in a household portfolio is only 2. The results are very similar

regardless of whether the value-weighted or equally weighted definition of CoG is used.

We also control for portfolio size. Specifically, if wealthier households tend to be better

diversified and are also located closer to firms on average, similar results would arise, but

the results would be because of this omitted variable. We therefore include the logarithm

of average portfolio-size within a postal code area, ln(Wp), in the regression. The estimated

coefficient decreases by about two thirds when ln(Wp) is included, both in the value-weighted

and equally weighted CoG specification, but still remains highly significant.

We next test Prediction 2, which at the postal code level states that postal codes with

zero portfolio holdings in a firm tend to lie geographically further away from that firm

than postal codes with positive holdings. For each stock, we perform a two-sample t-test,

comparing the average distances of postal codes with zero and with positive holdings from

the firm’s headquarter. The results are shown in Table 3.

The average distance for postal codes with zero holdings is about 0.332, whereas the

average distance for postal codes with positive holdings is about 0.224, corresponding to

a difference of 0.108—about 85 miles. At the individual firm level, the average distance

from postal code with zero holdings is higher for 119 of the 125 stocks. For 116 of these

firms, the difference is statistically significant at the 0.01% level. For the remaining 6 firms,
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Table 3: Test of Prediction 2: Zero versus positive portfolio holdings

This table shows results from two-sample t-tests of difference in means between the distance from postal
codes with zero holdings to firm headquarter and from postal codes with positive holdings.

Zero holding Positive holding Difference

Average distance to HQ 0.332 0.224 0.108
Number of firms 6 119
Average t-stat −3.047 14.080
Average t-stat, Total 13.258

for which the average distance is higher from postal codes with positive holdings, only one

is significant at the 0.01% level. The average t-statistic for the difference of means being

positive is 13.3. Thus, the data strongly support the prediction that the further away from

a firm’s headquarters, the higher the likelihood of zero portfolio holdings.

We also estimate the cutoff distance, d̄. Specifically, for each of the 125 stocks, we

choose the d̄ that maximizes the number of correctly classified postal codes with respect to

whether the stock holdings in the firm is positive or zero. The results are shown in Table 4.

The average estimated d̄ is 0.1799, corresponding to a threshold distance of about 143 miles.

Beyond this distance to a firm’s headquarter, the familiarity is thus predicted to be so low

that an investor completely avoids investing in a stock.

The fraction of holdings that are zero among all postal code/firm observations is slightly

less than two thirds, about 64%. When the estimated cutoff thresholds at the firm level are

used to predict whether a postal code/firm portfolio holding is zero, the fraction of correct

classifications is about 75%, i.e. about three quarters. The model thus captures quite well

whether investors in a postal code invest in a stock or not.

Prediction 3, formulated at the postal code level, suggests that that households located

in the same postal code should hold portfolios with more overlap (i.e. more common stocks)

than if the portfolios were randomly chosen. For example, for two households that each

randomly and independently invest in one of N stocks, with probability 1
N of choosing each

stock, the probability that the two portfolios overlap would also be 1
N . In other words, the

expected value of the random value Ñ c, which denotes the number common stocks in their

portfolios, would be 1
N . More generally, if household h1 randomly chooses Nh1 stocks and
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Table 4: Estimated threshold for zero portfolio holdings

This table shows results the estimated thresholds, d̄, for when portfolio holdings become zero.

Value

Average threshold, d̄ 0.1799
Standard deviation 0.2165
Fraction of zero holdings 0.6359
Fraction correctly classified 0.7534

household h2 randomly and independently chooses Nh2 stocks, then the expected overlap is

E
[
Ñ c
h1,h2

]
=
Nh1Nh2

N
.

Prediction 3 can then be tested by studying the actual versus expected overlap of the

portfolios of all households located within the same postal code area, and sum up these

overlaps over all postal codes, i.e. by calculating the actual total overlap

N c
TOT =

∑
p

∑
h1,h2∈Hp
h1 6=h2

N c
h1,h2 ,

where Hp = {h : ph = p} is the set of households in postal code area p, and comparing it

with expected total overlap.

The actual total overlap in the data is N c
TOT = 51, 604, 247, whereas the expected total

overlap under the independent, 1
N probability-per-stock, assumption is 3, 478, 029. Thus,

the likelihood that two randomly chosen households within the same randomly chosen postal

code area invest in the same stock is almost 15 times higher than expected.

A limitation of the above test is that it assumes that each stock is chosen with the same

probability, 1
N , whereas in practice some stocks (for example, the telecommunications com-

pany Nokia in our dataset) are much more broadly held than others. The higher overlap will

therefore partly be a consequence of the 1
N assumption. We therefore use a more sophisti-

cated bootstrapping method, based on the actual distribution of portfolio holdings among

the households to test the prediction. Briefly, we assume that the empirical distribution of

household portfolio holdings represent the underlying data generating process, and compare

the expected overlap if households and their portfolios were randomly assigned to postal

codes with what is observed in the data. An interesting property of this test is that the max-

imum portfolio size, measured by number of stocks in the portfolio, can be capped, so that
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Table 5: Test of Prediction 3: Overlap of portfolios within a postal code area

This table tests whether portfolio overlaps within a postal code area is higher than expected if households
were randomly assigned to the area. Column (1) shows the maximum portfolio size included in test, column
(2) the number of households included in the sample, column (3) the expected number of overlaps, column
(4) the actual number of overlaps, and column (5) the ratio between actual and expected overlaps.

Max. portf. size Number of households Actual overlap Expected overlap Ratio
1 188,535 6,324,570 2,649,371 2.387
2 268,268 12,989,232 6,096,314 2.130
5 357,772 28,450,235 16,782,239 1.695
10 393,606 42,315,889 27,935,744 1.515
20 404,277 49,978,463 34,481,911 1.449
125 405,628 51,604,247 35,952,390 1.436

the test is applied to a subpopulation of households whose portfolios contain no more than

1, 2, 5, etc., stocks. Because location, via personal beliefs, drives both underdiversification

and the choice of similar portfolios for nearby households, we expect higher-than-expected

overlaps to be more pronounced among households that hold few stocks.13 Further details

of the test are provided in Appendix D.

The results of the bootstrapping method are shown in Table 5. The ratio of actual-

to-expected overlap (the right-most column in the table) is the highest, 2.387, when only

households holding one stock are included in the test, and then gradually decreases as the

maximum portfolio size increases. The ratio is 1.436 when the full sample of households

is included. These ratios are thus lower than the ratio based on the 1
N assumption, but

remain highly significant, in support of Prediction 3.

Next, we test Prediction 4, our empirical specification of belief formation in equa-

tion (20), which can be viewed as a panel with fixed effects for postal codes (representing the

log-risk aversion coefficients, gp) and companies (representing the log-return characteristics,

sn). We therefore use panel regressions.

The model is not completely identified because the mapping gh 7→ gh + c, sn 7→ sn + c

yields the same household portfolio weights for an arbitrary constant c. Intuitively, higher

risk aversion coefficients are offset by more favorable investment opportunities. We obtain

13There is also a purely mechanical effect in that the actual overlap cannot be much higher than the
expected overlap when households hold large portfolios. For example, if a household holds all stocks in
its portfolio, every stock in the other household’s portfolio is common for the two portfolios, so actual and
expected overlap must coincide in that case.
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Table 6: Test of Prediction 4: Estimated sensitivity coefficient, κ

This table estimates the sensitivity coefficient, κ. Panel A includes observations with ωpn = 0 replaced
with ωpn = 1 (one Finnish Mark, corresponding to about USD 0.17). Panel B excludes observations with
ωpn = 0. Univariate in column 2, including risk aversion in column 3, including risk aversion and stock
distributions in column 4, panel regression with postal code and stock fixed effects and robust standard
errors double-clustered at the postal code and firm level in column 5. Statistical significance levels: * =
0.01, ** = 0.001, *** = 0.0001.

(1) (2) (3) (4) (5)
Panel A
Sensitivity coefficient, κ 5.873*** 3.861*** 3.188*** 3.185***
Standard error 0.037 0.058 0.056 0.434

log risk aversion, g
-average −4.330 −4.120
-max −0.382 −0.325
-min −12.887 −12.834

log distribution, s
-average 0
-max 7.258
-min −2.658

R2 0.065 0.385 0.591 0.591
Adj. R2 0.065 0.380 0.588 0.588
N = 368, 298

Panel B
Sensitivity coefficient, κ 2.251*** 2.123*** 2.669*** 2.669***
Standard error 0.035 0.061 0.046 0.403

log risk aversion, g
-average −8.572 −7.979
-max −4.563 −2.638
-min −12.845 −12.883

log distribution, s
-average 0
-max 4.166
-min −3.985

R2 0.030 0.210 0.626 0.626
Adj. R2 0.030 0.191 0.618 0.618
N = 134, 902

unique identification by normalizing the results so that the average sn coefficient is 0 (sn = 0

is, for example, obtained with αn − i = 0.09, σn = 0.3).

Finally, we consider two approaches for handling portfolio weights of zero, for which

the logarithm is not defined. There are a large number of such observations in the data,

even with aggregation at the postal code level. Under the first approach, we include these

observations but replace the zero with a small positive threshold, namely one Finnish Mark
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(corresponding to about USD 0.17). Under the second approach, we exclude such obser-

vations and run unbalanced panel regressions. The disadvantage of the former approach is

that it introduces an arbitrary lower threshold, whereas the disadvantage of the latter is

that it does not use information about zero holdings.

The results are shown in Table 6. We see that the coefficient measuring sensitivity to

distance, κ, is highly significant in all regressions (univariate, including risk-aversion fixed

effects, including risk-aversion and stock-characteristic fixed effects, and panel regression

with robust standard errors double clustered at the firm and postal-code level).

The results are also economically significant. The standard deviation of the distance

between headquarter and household is 0.312. For the coefficient estimate that includes risk-

aversion, stock distribution, and all observations (first row in Panel A, column 4, κ = 3.118),

a one standard deviation decrease in distance to a firm’s headquarters predicts an increase

in portfolio holdings by a factor e3.1880×0.312 = 2.645. The R2 for the univariate regression

in Panel A is 0.0654, corresponding to a correlation between network proximity and log-

portfolio holdings of about 0.26.

Finally, we test Prediction 5, whether the estimated sn coefficients (the firm fixed effects)

from the belief-based model are informative about stocks return distributions out-of-sample.

We calculate daily mean excess returns, α̂n − i, and volatility, σ̂n, over a five-year period,

from 2003-2005.

The results are shown in Table 7. We first compare the relation between estimated

sn and realized volatility, ln(σ̂n) because realized volatility is the part of ln
(
α̂n−i
σ̂2
n

)
that is

easiest to estimate. This relation should be negative. As shown in Column (1) in Panel

A of the table, the relation is strongly negatively significant, with an R2 of over 50%.

We compare this with the prediction of the rational-expectations model. In the rational-

expectations model, all households choose the same risky portfolio, φhn ≡ 1 for all h and n,

and by summing (19) over households, it follows that sn is directly related to a firm’s log-size.

Column (2) in Panel A of Table 7 shows that firm log-size also is informative about volatility

in our data, but with lower explanatory power than the belief-based model. Moreover,

when both the belief-based and rational-expectations estimates are included in a bivariate
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Table 7: Test of Prediction 5: Predictive power of estimated sn coefficients

This table tests whether the sn coefficients estimated from portfolio holdings predict realized volatility (Panel
A) and return over variance (Panel B) in subsequent 5-year period. Column (1) uses the belief-based model,
column (2) the rational expectations model, and column (3) both models. Realized volatility and returns
measured using daily data over 3-year period, 2003-2005. Statistical significance levels: * = 0.01, ** = 0.001,
*** = 0.0001.

(1) (2) (3)
Panel A: ln(σ̂n)
Rational expectations, sREn −0.149*** 0.036
Belief-based, sBBn −0.185*** −0.219***
R2 0.506 0.356 0.510
N 125

Panel B : ln
(
α̂n−i
σ̂2
n

)
Rational expectations, sREn 0.075 −0.296*
Belief-based, sBBn 0.149** 0.426***
R2 0.068 0.019 0.121
N 108

regression, as done in Column (3) of Panel A, the belief-based estimate dominates, remaining

significant, whereas the log-firm size coefficient switches sign and becomes insignificant.

In Panel B of the table, we do the same estimation for ln
(
α̂n−i
σ̂2
n

)
as we did for ln(σ̂),

including the 108 stocks that had positive excess realized returns during the period (for

which the logarithm is defined). The explanatory power is much lower both for the belief-

based coefficient and the coefficient based on the rational expectation model, due to the well-

known challenges of estimating stocks’ expected returns from realized returns. However,

the belief-based estimate remains significant at the 0.1% level in the univariate regression,

and at the 0.01% level in the bivariate regression, while the rational-expectations coefficient

switches sign in the bivariate regression. As a robustness check, we also run the same

tests using three years of realized returns. The results (not reported) are similar, the main

difference being that the belief-based coefficient in the bivariate regression in Panel B is

significant only at the 10% level.

We stress that only data on portfolio holdings and location is used in the estimation of

the sn’s. That these are informative about out-of-sample stock-return distributions therefore

lends significant support for our belief-based explanation of observed local bias.
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4.4 Robustness

A possible concern with the previous results is that they may be driven by different behaviors

of households in urban areas (specifically, around Helsinki) relative to rural areas. For

example, households in the Helsinki area may have a preference for stocks headquartered

in an urban area for some other reason than network proximity, which will then lead to

results similar to those reported above. To check if this is indeed the case, we run the

regressions excluding stocks and postal codes in the Helsinki area (postal codes with fewer

than 5 digits). The results are reported in Table D2 in Appendix D. We see that the results

are qualitatively similar as before, and specifically, still both statistically and empirically

highly significant. We also exclude households in the Helsinki area but not stocks, with

similar results (not reported).

A potential alternative explanation for the results is that it may not be geographical

distance per se that drives beliefs, but rather employment. That is, if households tend to

invest in the firms they work for—which they likely also live close to—similar results may

arise. To rule out such an explanation, we exclude observations for which the postal codes

of account holder and firm headquarter are close. Specifically, we exclude all observations

for which the normalized distance is less than some d0. Table D3 in Appendix D, shows

that the results remain qualitatively similar when d0 = 0.01 (corresponding to a minimal

distance of about 8 miles between postal code of account holder and firm headquarter for

an observation to be included), and d = 0.03 (corresponding to a minimal distance of about

24 miles). Thus, an employment effect does not seem to be driving the results.

Our approach provides a tightly specified model that links “local bias” to familiarity,

through adjustments of investors’ beliefs about a firm as a function of distance—in our

empirical specification captured by geographical distance. Other explanations for local bias

that have been put forward in the literature are transaction costs and hedging demand.

We argue that transaction costs are unlikely to play a major role in explaining home

bias within a country, especially when all stocks are traded on the same exchange. With

respect to hedging demand, an alternative explanation for why agents prefer to invest in

nearby stocks is that they provide a hedge against local shocks. For example, if a local firm

performs well, prices of services and goods (e.g., housing) may increase because of increased
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Table 8: Estimate of sensitivity coefficient with additional controls

This table estimates the sensitivity coefficient, κ, when including investor year of birth (YOB) and gender
(GEN). Panel A sets d0 = 0, whereas Panel B sets d0 = 0.05, corresponding to a threshold distance of about
40 miles. No fixed effects in column 2, including risk aversion in column 3, including risk aversion and stock
distributions in column 4, panel regression with postal code and stock fixed effects and robust standard
errors double-clustered at the postal code and firm level in column 5. Statistical significance levels: * =
0.01, ** = 0.001, *** = 0.0001.

(1) (2) (3) (4) (5)

Panel A

Sensitivity coefficient, κ 2.298*** 2.056*** 2.658*** 2.658***
Standard error 0.034 0.060 0.046 0.398

Year of birth coefficient, YOB −0.031*** −0.040*** −0.013*** −0.013***
Standard error 0.001 0.001 0.001 0.001

Gender coefficient, GEN 0.597*** 0.445*** −0.157*** −0.157***
Standard error 0.019 0.018 0.013 0.033

R2 0.065 0.249 0.630 0.630
Adj. R2 0.065 0.233 0.622 0.622
N = 134, 825

Panel B

Sensitivity coefficient, κ 0.809*** 0.704*** 1.377*** 1.377***
Standard error 0.040 0.073 0.056 0.263

Year of birth coefficient, YOB −0.031*** −0.037*** −0.012*** −0.012***
Standard error 0.001 0.001 0.001 0.001

Gender coefficient, GEN 0.461*** 0.345*** −0.169*** −0.169***
Standard error 0.019 0.019 0.014 0.033

R2 0.039 0.200 0.606 0.606
Adj. R2 0.039 0.180 0.596 0.596
N = 115, 256

demand from the employees at the firm who are now wealthier. Investing in the local firm

provides a hedge against such price shocks. Inasmuch as such hedging demand is related

to the age and gender of the population, we can assess its affect, because account level

information is available in the data. For example, younger investors—who are less likely

to own their home—are likely to be more exposed to real estate price shocks than older

investors.

We create variables for the average birth year (YOB) of the investors in a specific stock

and postal code, and for their gender (GEN, which is 1 for male and 2 for female). The

correlations between the distance to firm headquarter and these variables are both low,
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ρd,YOB = −0.049, and ρd,GEN = −0.056, suggesting that any hedging demand that varies

with age and/or gender is not captured by the distance to firm headquarter. To further

explore a potential relation, we rerun the tests from Table 6, Panel B, but including birth

year and gender, and also from Table D3 with d0 = 0.05, to rule out hedging demand for

local shocks within a 40-mile radius.

As seen in Table 8, the coefficient estimates for κ barely change and are still highly

significant. We conclude that it is unlikely that our results are driven by hedging demand

against local shocks, at least within a 40-mile radius of the investor, and against shocks

that are related to age and/or gender.

A concern may be that headquarter provides a very rough measure of a firm’s location.

For example, some firms have operations spread out over the whole country and will be

familiar to households far away from its headquarter. The challenges of developing an

objectively superior alternative measure of firm location are significant though, which is

why we use the well-established headquarter measure of location. As a robustness check,

we ensure that the results do not change when excluding the two “least local” companies

during the period: the global telecommunication company Nokia, which made up over half

of the stock market value in the early 2000s, and the retail store chain Stockmann, which

had stores all over Finland. The results (not reported) are very similar when excluding

those two companies.

5 Conclusion

Motivated by empirical evidence that rejects the rational expectations hypothesis, we de-

velop a model where a household’s beliefs are an endogenous outcome of its location in

a bipartite network of households and firms. We then evaluate the model empirically us-

ing data on portfolio holdings to infer household beliefs. The empirical evidence indicates

that geographical distance between the locations of households and firms has a statistically

and economically significant effect on the beliefs of households about stock returns. We

calculate the reduction in household welfare resulting from the deviation of beliefs from

rational expectations and show how this varies depending on the location of households in

the network.
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A Proofs

In this appendix, we provide all derivations for the results in the main text.

Proof of Proposition 1

The definition of the certainty equivalent in (9) implies that

µ̂νh,t[Uh,t+dt] = EQνh

t

[
U1−γh
h,t+dt

] 1
1−γh .

Therefore

µ̂νh,t[Uh,t+dt] = EQνh

t

[
U1−γh
h,t+dt

] 1
1−γh = EQνh

t

[
U1−γh
h,t + d(U1−γh

h,t )
] 1

1−γh .

Applying Ito’s Lemma, we obtain

d(U1−γh
h,t ) = (1− γh)U−γhh,t dUh,t −

1

2
(1− γh)γhU

−γh−1
h,t (dUh,t)

2

= (1− γh)U1−γh
h,t

[
dUh,t
Uh,t

− 1

2
γh

(
dUh,t
Uh,t

)2
]
.

Therefore

µ̂νh,t[Uh,t+dt] = EQνh

t

[
U1−γh
h,t+dt

] 1
1−γh = Uh,t

(
Et

[
1 + (1− γh)

[
dUh,t
Uh,t

− 1

2
γh

(
dUh,t
Uh,t

)2
]]) 1

1−γh

= Uh,t

(
1 + (1− γh)

[
EQνh

t

[
dUh,t
Uh,t

]
− 1

2
γhE

Qνh

t

[(
dUh,t
Uh,t

)2
]]) 1

1−γh

= Uh,t

(
1 + (1− γh)

[
EQνh

t

[
dUh,t
Uh,t

]
− 1

2
γhEt

[(
dUh,t
Uh,t

)2
]]) 1

1−γh

.

Hence,

µ̂νh,t[Uh,t+dt] = Uh,t

(
1 + EQνh

t

[
dUh,t
Uh,t

]
− 1

2
γhEt

[(
dUh,t
Uh,t

)2
])

+ o(dt).

Therefore, in the continuous time limit, we obtain

µ̂νh,t[dUh,t+dt]

dt
=
µ̂νh,t[Uh,t+dt]− Uh,t

dt
= Uh,t

(
1

dt
EQνh

t

[
dUh,t
Uh,t

]
− 1

2
γh

1

dt
Et

[(
dUh,t
Uh,t

)2
])

.
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From Girsanov’s Theorem

EQνh

t

[
dUh,t
Uh,t

]
= Et

[
dUh,t
Uh,t

]
+ Et

[
dUh,t
Uh,t

dMh,t

Mh,t

]
.

Therefore

µ̂νh,t[dUh,t]

dt
=
µ̂νh,t[Uh,t+dt]− Uh,t

dt

= Uh,t

(
1

dt
Et

[
dUh,t
Uh,t

]
− 1

2
γh

1

dt
Et

[(
dUh,t
Uh,t

)2
]

+
1

dt
Et

[
dUh,t
Uh,t

dMh,t

Mh,t

])
.

It follows from the above expression that the certainty equivalent operator, µh,t[·], is given

by

µh,t[dUh,t]

dt
=
µh,t[Uh,t+dt]− Uh,t

dt

= Uh,t

(
1

dt
Et

[
dUh,t
Uh,t

]
− 1

2
γh

1

dt
Et

[(
dUh,t
Uh,t

)2
])

.

Therefore

µ̂νh,t[dUh,t]

dt
=
µh,t[dUh,t]

dt
+

1

dt
Uh,tEt

[
dUh,t
Uh,t

dMh,t

Mh,t

]
,

i.e.

µ̂νh,t[dUh,t] = µh,t[dUh,t] + Uh,tEt

[
dUh,t
Uh,t

dMh,t

Mh,t

]
,

which implies

µ̂νh,t[Uh,t+dt] = µh,t[Uh,t+dt] + Uh,tEt

[
dUh,t
Uh,t

dMh,t

Mh,t

]
.

If the investment opportunity set is constant, then Uh,t is a function solely of Wh,t – there

are no other state variables. Hence

Et

[
dUh,t
Uh,t

dMh,t

Mh,t

]
=
Wh,tUWh,t

Uh,t
ν>h,tωh,tdt,

and so

µ̂νh,t[Uh,t+dt] = µh,t[Uh,t+dt] + Uh,t
Wh,tUWh,t

Uh,t
ν>h,tωh,tdt.

Equation (10) follows from the above expression and (8).
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Proof of Corollary 1

If the investment opportunity set is constant, then the personal divergence vector is obtained

from the following optimization problem:

inf
νh,t

(
Wh,tUWh,t

Uh,t
ν>h,tωh,t +

1

2γh

N∑
n=1

φhn
1− φhn

ν2
hn,t

σ2
n

)
.

The FOC for the above problem is

0 =
Wh,tUWh,t

Uh,t
ωhn,t +

1

γh

φhn
1− φhn

νhn,t
σ2
n

.

Equation (12) follows from the above equation.

Proposition A1 and its proof

Proposition A1. The utility function of a household with endogenous beliefs is given by

the following Hamilton-Jacobi-Bellman equation:

0 = sup
Ch,t

(
δ uψ

(
Cht
Uht

)
+ sup
ωh,t

inf
νh,t

1

Uh,t
µνh,t

[
dUh,t
dt

])
, where (A1)

uψ(x) =
x

1− 1
ψ − 1

1− 1
ψ

, ψ > 0, and

µνh,t [dUh,t] = µνh,t [Uh,t+dt − Uh,t] = µνh,t [Uh,t+dt]− Uh,t,

with µνh,t [Uh,t+dt] given in (10).

Proof: Writing out (14) explicitly gives

U
1− 1

ψh
h,t = (1− e−δhdt)C

1− 1
ψh

h,t + e−δhdt
(
µνh,t[Uh,t+dt]

)1− 1
ψh ,

where for ease of notation sup and inf have been suppressed. Now(
µνh,t[Uh,t+dt]

)1− 1
ψh =

(
Uh,t + µνh,t[dUh,t]

)1− 1
ψh

= U
1− 1

ψh
h,t

(
1 + µνh,t

[
dUh,t
Uh,t

])1− 1
ψh

= U
1− 1

ψh
h,t

(
1 +

(
1− 1

ψh

)
µνh,t

[
dUh,t
Uh,t

])
+ o(dt).

Hence

U
1− 1

ψh
h,t = δC

1− 1
ψh

h,t dt+ U
1− 1

ψh
h,t

(
1 +

(
1− 1

ψh

)
µνh,t

[
dUh,t
Uh,t

])
− δhU

1− 1
ψh

h,t dt+ o(dt),
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from which we obtain (A1).

From (A1), we see that the Hamilton-Jacobi-Bellman equation can be decomposed into

a portfolio-optimization problem and an intertemporal consumption-choice problem. Given

that the investment opportunity set that is constant over time, the maximized household

utility is a constant multiple of the household’s wealth. In this case, the Hamilton-Jacobi-

Bellman equation can be decomposed into two parts, as shown in the proposition below.

Proposition A2 and its proof

Proposition A2. The household’s optimization problem consists of two parts, a single-

period mean-variance optimization

sup
ωh,t

inf
νh,t

MVh(ωh,t,νh,t),

and an intertemporal consumption-choice problem

0 = sup
Ch,t

(
δh uψ

(
Ch,t
Uh,t

)
−
Ch,t
Wh,t

+ sup
ωh,t

inf
νh,t

MVh(ωh,t,νh,t)

)
, where (A2)

MVh(ωh,t,νh,t) = i+
(
α− i1

)>
ωh,t −

1

2
γω>h,tV ωh,t + ν>h,tωh,t +

1

2γh
ν>h,tΣF

−1
h Σνh,t, (A3)

α = (α1, . . . , αN )>, and 1 denotes the N × 1 unit vector.

Proof:

From (10) in Proposition 1, we have

µνh,t

[
dUh,t
Uh,t

]
= Et

[
dUh,t
Uh,t

]
− 1

2
γhEt

[(
dUh,t
Uh,t

)2
]

+

(
Wh,tUWh,t

Uh,t
ν>h,tωh,t + Lh,t

)
dt

We use the Ansatz

Uh,t = uhWh,t, (A4)

where uh is a constant. Consequently,

dUh,t
Uh,t

=
dWh,t

Wh,t
,

and so.

µνh,t

[
dUh,t
Uh,t

]
= Et

[
dWh,t

Wh,t

]
− 1

2
γhEt

[(
dWh,t

Wh,t

)2
]

+
(
ν>h,tωh,t + Lh,t

)
dt.
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Hence,

1

dt
µνh,t

[
dUh,t
Uh,t

]
= −

Ch,t
Wh,t

+ i+ (α− it1)>ωh,t −
1

2
γhω

>
h,tV ωh,t + ν>h,tωh,t + Lh,t

We now define

MVh(ωh,t,νh,t) = i+ (α− it1)>ωh,t −
1

2
γhω

>
h,tV ωh,t + ν>h,tωh,t + Lh,t,

which can be rewritten as (A3). Therefore, provided the Ansatz in (A4) is true, our result

follows from (A1) in Proposition A1.

We show the Ansatz in (A4) is true by explicitly solving for uh. The first part of this

proof consists of solving jointly for household beliefs and portfolios, which is done in the

Proof of Proposition 2. The second part consists of solving for optimal consumption and

substituting the optimal controls into (A2) and hence solving for Uh,t, which is also given

in the proof of Proposition 2.

Proof of Proposition 2

Substituting (A4) into (12) and exploiting the fact that Σ and Fh are diagonal matrices

and hence commute with each other, we obtain

νh,t = −γhΣ2F−1
h ωh,t. (A5)

Again, exploiting the commutativity of diagonal matrices, we can write the portfolio choice

problem in (A3) as

sup
ωh,t

(α− i1)>ωh,t −
1

2
γhω

>
h,t

(
V + Σ2F−1

h

)
ωh,t.

The above linear-quadratic problem has a unique interior solution given by (16). Substi-

tuting (16) into (A5) and simplifying gives (15). We can also rewrite the expression for ωh

in (16) in terms of the personal divergence measure:

ωh =
1

γh
V −1(α+ νh − i1),

where

νh = −(I + V FhΣ−2)(α− i1).

Substituting the optimal controls (15) and (16) into (A3), and simplifying gives

sup
ωh,t

inf
νh,t

MVh(ωh,t,νh,t) = i+
1

2γh
(α− i1)>(V + Σ2F−1

h )−1(α− i1).
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From the Hamilton-Jacobi-Bellman equation in (A1) (and of course also the specialized

version in (A2)), the first-order condition with respect to consumption is

δh

(
Ch,t
Wh,t

)− 1
ψh

=
Uh,t
Wh,t

. (A6)

From the above expression (which holds also for a stochastic investment opportunity set),

we can see that
Uh,t
Wh,t

is a constant if and only if
Ch,t
Wh,t

is a constant. Substituting the above

first-order condition into (A2) to eliminate Uh,t and then solving for
Ch,t
Wh,t

gives

ch =
Ch,t
Wh,t

= δhψh + (1− ψh) sup
ωh,t

inf
νh,t

MVh(ωh,t,νh,t).

We can thus see that
Ch,t
Wh,t

is indeed a constant. Also, from (A6) we can see that

uh =

[
δψhh
ch

] 1
ψh−1

.

Therefore, we obtain the following result for a household’s maximised utility

uh =
Uh,t
Wh,t

=

[
δψhh

δhψh + (1− ψh) supωh,t infνh,tMVh(ωh,t,νh,t)

] 1
ψh−1

.

B Quantfiying the Impact of Geography Beliefs

We want to show how geography impacts the deviation of beliefs relative to rational expec-

tations. The reference probability measure P is the belief under rational expectations. The

deviation of the non-rational expectations belief Qνh from P is given by the relative entropy

per unit time of P with respect Qνh , i.e. (6).

We do not directly observe the vector νh, which we need in order to compute (6).

However, we can indirectly obtain νh via knowledge of portfolios, as shown in (12) (and

more simply in (A5)). We now eliminate νh in (6) by substituting (A5) into (6), thereby

obtaining

DKL[P|Qνh ] = γ2
hω
>
h,tΣF

−1
h (Ω−1)>F−1

h Σωh,t. (B1)

The above expression allows us to measure the deviation of the non-rational expectations

belief, Qνh from the rational expectations belief P using portfolio data.
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To understand (B1), we evaluate it for the special case when the return correlations are

zero, i.e. Ω = I. Therefore, (B1) reduces to

DKL[P|Qνh ] = γ2
hω
>
h,tΣF

−2
h Σωh,t (B2)

=
N∑
n=1

ω2
hn,tσ

2
n

(
1

φhn
− 1

)2

.

With portfolio weights given by

ωhn =
1

γh

αn − i
σ2
n

φhn,

the deviation of the non-rational expectations belief, Qνh from the rational expectations

belief P becomes

DKL[P|Qνh ] =

N∑
n=1

(
αn − i
σn

)2

(1− φhn)2 , (B3)

which is decreasing in each individual proximity measure, φhn.

C Welfare Analysis

We measure household-level welfare losses by taking the optimal controls for a household

which has biased beliefs and substituting them into the utility of a household whose beliefs

are given by the reference probability measure P.

For an exogenously specified consumption and portfolio rule, (A2) reduces to

0 = δh uψh

(
Ch,t
Uh,t

)
−
Ch,t
Wh,t

+ UMV
h (ωh,t), (C1)

where UMV
h (ωh,t) is the utility of a mean-variance investor whose beliefs are given by the

reference probability measure P, i.e.

UMV
h (ωh,t) = i+

(
α− i1

)>
ωh,t −

1

2
γω>h,tV ωh,t.

By making Uh,t the subject of (C1), we see that for a for a household whose beliefs are

given by the reference probability measure P, utility per unit wealth, vh is given in terms

of consumption-portfolio choices by

vh(ch,ωh) =

[
ψhδh

ψhδh + (1− ψh)(UMV
h (ωh)− ch)

] 1
1−1/ψh

ch,

where ch = Ch/Wh is the consumption-wealth ratio.
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C.1 Parameter values

• We already have an estimate for κ, so we can calculate the matrix Fh for each house-

hold.

• In addition, we estimate from the data individual stock-return volatilities, cross-

correlations and expected excess returns.

• Finally, we need to assume values for the preference parameters: δh, ψh and γh, which

we can assume are equal across households (and hence, across post codes), which

will allow us to focus on differences arising purely from location. Given that there is

some debate about the appropriate values for these parameters, we can consider three

values for each of these parameters: a low value, a medium value, and a high value.

– δh = {0.02, 0.03, 0.04}.

– ψh = {0.70, 0.80, 0.90}.

– γh = {2.00, 4.00, 6.00}.

C.2 Measuring Beliefs & Welfare

1. Using the variance-covariance matrix for returns, we compute, at the post code level,

each household’s portfolio volatility
√
ω>h,tV ωh,t. The advantage of this measure is

that it does not depend on expected excess returns, which are notorious for being

difficult to measure, and it is independent of preference parameters.

2. Using, at the post code level, each household’s portfolio vector, we compute the devia-

tion of the implied non-rational expectations belief Qνh from the rational expectations

belief P, via (B2). Note that this quantity is also a measure of information loss per

unit time, and is decreasing in each of the proximity parameters φhn, as we can see

from (B3).

In order to make the measure (B2) independent of the value chosen for the pref-

erence parameter γh (which we assume is equal across households), we could report a

scaled version of DKL[P|Qνh ]; for instance, DKL[P|Qνh ]∑H
k=1D

KL[P|Qνk ]
. We could then produce a

heatmap of Finland reporting the relative information loss for each post code, as a way

of measuring the effect of geography on the deviation from the rational expectations

belief, using a darker shade of red for larger deviations.
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3. Using, at the post code level, each household’s portfolio vector, we compute its

network-weighted information losses per unit time,

L̂h,t = γ2
hω
>
h,tΣ

2F−1
h ωh,t.

Observe that the above expression can be rewritten as

L̂h,t = γ2
h

N∑
n=1

ω2
hn,tσ

2
n

(
1

φhn
− 1

)
. (C2)

Since φhn is a measure of proximity, we see that network-weighted information losses

shall be larger when proximity is smaller.

For an example, consider also the case where N = 2 and φh1 = 1, φh2 = ε (where

ε is small and positive), and σ1 = σ2 = σ. The first asset is the ’close’ one and the

second one is the ’far’ asset. In this case,

L̂h,t = γ2
hσ

2ω2
h2,t

(
1

ε
− 1

)
.

We can see that the household incurs greater network-weighted information losses

when she invests more of her wealth in the far asset. She will trade off this cost

against any benefit from investing in the far asset. With φh1 = φh2 = φ, we would

obtain

L̂h,t = γ2
hσ

2

(
1

φ
− 1

)
(ω2
h1,t + ω2

h2,t).

This case is the standard case of global, i.e. non-asset-specific, ambiguity aversion.

Now we substitute the portfolio policy ωhn = 1
γh

αn−i
σ2
n
φhn into (C2) to obtain

L̂h,t =

N∑
n=1

(
αn − i
σn

)2

φhn (1− φhn) .

In contrast with (B3), the above expression is not monotonic in φhn. This is a conse-

quence of the network weighting of the information losses.

4. We can compute a household’s mean-variance utility,

UMV
h,t = it + (α− i1)>ωh,t −

1

2
γhω

>
h,tV ωh,t, (C3)

which will depend on the risk-aversion parameter, γh. So, for each post code, we

would report the mean-variance utility for three levels of γh. We could then produce

a heat map using the middle value of the risk aversion parameter.
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For the special case where return correlations are zero and return volatilities and

expected returns are equal across assets, we know V = σ2I and ωhn = 1
γh

α−i
σ2 φhn. In

this case, (C3) reduces to

UMV
h,t = it +

1

2γh

(
α− i
σ

)2 N∑
n=1

φhn,

which increases with respect to each proximity measure φhn.

5. We could also compute each household’s consumption-wealth policy,

ch =
Ch,t
Wh,t

= ψhδh + (1− ψh)

(
it +

1

2
γhω

>
h,tV ωh,t +

1

2γh
L̂h,t

)
. (C4)

This depends on all three preference parameters, so we would have nine values for each

household, corresponding to the three values for the three preference parameters.

For the special case where return correlations are zero and return volatilities and

expected returns are equal across assets, we know V = σ2I and ωhn = 1
γh

α−i
σ2 φhn. In

this case (C4) reduces to

ch =
Ch,t
Wh,t

= ψhδh + (1− ψh)

(
it +

1

2γh

(
α− i
σ

)2 N∑
n=1

φhn +
1

2γh

N∑
n=1

(
α− i
σ

)2

φhn (1− φhn)

)

= ψhδh + (1− ψh)

(
it +

1

2γh

(
α− i
σ

)2
(

2

N∑
n=1

φhn −
N∑
n=1

φ2
hn

))

= ψhδh + (1− ψh)

(
it +

1

2γh

(
α− i
σ

)2 N∑
n=1

[
1− (1− φhn)2

])
.

The above expression is useful, because it tells us how biases distort the consumption-

savings decision. For ψh < 1 (ψh > 1), decreasing a particular φhn leads to decreased

(increased) consumption from wealth.

6. Finally, we can compute each household’s lifetime welfare per unit wealth.

Uh,t
Wh,t

=

[
δhψh

ψhδh + (1− ψh)(UMV
h,t − ch,t)

] 1
1−1/ψh

ch,

which also depends on all three preference parameters, so we would have nine values

for each household. We could then produce a heat map using the middle values of the

three preference parameters.
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To understand the above expression, observe that increasing current consumption

is clearly beneficial but comes at the expense of reduced savings. The benefit is

represented by the last factor i.e., the ch that appears outside the expression in square

brackets. The negative impact on savings is captured by the term UMV
h,t − ch,t in the

denominator of the first component. The term UMV
h,t −ch,t is the risk-adjusted expected

return on a household’s wealth, net of consumption. To obtain its impact on lifetime

welfare, this expected return needs to be capitalized, as shown above. The capitalized

value depends on the intertemporal aspects of the household’s preferences, that is, the

rate of time preference, δh, and the elasticity of intertemporal substitution, ψh.14

14In our partial equilibrium setting, Uh/Wh is non-monotonic in φhn. If households had identical prefer-
ences, imposing market clearing would give an endogenous risk-free rate and the Uh/Wh would simplify to
give an expression which is monotonic in φhn.
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D Additional Details for the Empirical Results

In this appendix, we provide additional information about the empirical tests and results.

Bootstrapping Method

Consider a finite multi-set of vectors, V = {vm}m∈M, |M| ∈ N, where vm ∈ {0, 1}N , N ∈ N.

In our test, m will be associated with a household and (vm)n will represent whether it holds

stock n (in which case (vm)n = 1) or not (in which case (vm)n = 0). The object V is a multi-

set, since there may be multiple households with the same stocks in their portfolios. The

nonzero elements in v ∈ V are denoted the vector’s constituents, and cv = |{` : (v)` = 1}|
is defined as the number of such constituents.

For two elements, va ∈ V, vb ∈ V, define the vector of overlaps, O(va,vb) ∈ {0, 1}N ,

such that O(va,vb)n = (va)n × (vb)n, and the overlap o(va,vb) =
∑

nO(va,vb)n ∈
{0, 1, . . . , N}.

Consider a multi-set A of (at least two) elements in V, ordered from 1 to r = |A|,
a1, . . . ,ar. This set will correspond to the set of household portfolios in a postal code area

in our test. The overlap in A is

o(A) =
1

2

∑
k,`=1,...,r

k 6=`

o(ak,a`). (D1)

Define Zk = {v ∈ V : cv = k}, the set of all elements in V, with k constituents, and

zk = |Zk|, the number of such elements. Also define K = max{k : zk > 0}. For simplicity,

we assume that zk > 0 for all k < K. Our analysis also holds if this is assumption is not

satisfied, but with the extra notational burden of excluding such k’s for which zk = 0 in

some of the sums below, which is why we make this assumption.

Consider a random data generating process to generate a vector ã of k constituents from

the elements in Zk, where each element in Zk is chosen with the same probability. Thus, if

the elements in Zk are ordered as vk1 , . . . ,v
k
zk

, then

P(ã = vk` ) =
1

zk
, ` = 1, . . . , k.

Now, consider two randomly chosen such elements, ã ∈ Zk and b̃ ∈ Z`, 1 ≤ k, ` ≤ K. The

expected overlap of these two elements, given the above data generating process, is then

o
Exp
k,` = E

[
o(ã, b̃)

]
=

1

zkz`

zk∑
s=1

z∑̀
t=1

o(vks ,v
`
t).
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Moreover, given the set A with r ≥ 2 elements, and the ordered elements, a1, . . . ,ar, the

expected overlap, when A is chosen from the above data generating process, is

oExp(A) =
1

2

∑
k,`=1,...,r

k 6=`

o
Exp
cak ,ca`

. (D2)

By comparing the actual overlap given in equation (D1) with the expected overlap given in

equation (D2), we can thus draw inferences about whether the elements in A were randomly

selected according to the above data generating process, or whether they have too much (or

too little overlap) compared with what would be expected.

Note that it is straightforward to restrict the above test to portfolios up to a specific

size, S, by replacing the set A with AS = {v ∈ A : cv ≤ S}. This allows us to draw

additional inferences about whether potential nonrandomness stems from elements with a

low number of constituents or not. Of course, AN = A.

For the portfolio data, we use the set of portfolios of households in different postal

code areas, Ap = {vh : h ∈ Hp}, p = 1, . . . , P . Our null hypothesis is that portfolios

of households within a postal code are randomly selected from the total set of portfolios,

V = ∪pAp. We compare the actual and expected total overlap across postal codes areas,

controlling for portfolio size, i.e.,

N c
TOT =

∑
p

o(ASp ) with E
[
Ñ c
TOT

]
=
∑
p

oExp(ASp ),

where we vary the portfolio size, S, between 1 and N .

The advantage of this method, which is admittedly more complex than the simple test

in the main paper, is that instead of assuming that each household picks each stock with

probability 1
N , we use the empirical distribution function of portfolios to test whether the

actual portfolios observed within postal codes are consistent with a “random allocation”

of these portfolios. This approach is therefore robust to some stocks being much more

widely held than others. Note that our total test contains P = 2, 923 postal codes, with an

average of 139 households each. The overrepresentation of overlap of 43.6%-139% we find

is therefore extremely statistically significant.

Additional Tables

The stocks in our sample are shown in Table D1. The estimate sensitivity coefficient when

excluding the Helsinki area is shown in Table D2. The estimated sensitivity coefficient when

including only distant observations are shown in Table D3.
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Table D1: Stocks in sample

This table lists the 125 stocks issued by companies that are headquartered in Finland and are included in
our sample. For companies with A- and B-shares, both shares are included in our sample.

1 Bank of Aland Plc A 2 Pohjola Group Plc
3 Norvestia Plc 4 Kesko Corporation B
5 Stockmann Plc A 6 Stockmann Plc B
7 Tieto Corporation 8 Amer Sports Corporation
9 Fiskars Corporation 10 Fiskars Corporation K
11 Huhtamki Oyj 12 Instrumentarium
13 Kone Corporation B 14 Metsa Board Oyj A
15 Metsa Board Oyj B 16 Nokia Corporation
17 Tamro Oyj 18 Tamfelt Corp.
19 Tamfelt Corporation Ord. shares 20 Bank of Aland Plc B
21 Uponor Oyj 22 Outokumpu Oyj
23 Citycon Oyj 24 Polar Real Estate Corp.
25 Raisio Plc Vaihto-osake 26 Birka Line Abp B
27 Pohjola Bank A 28 Finnair Oyj
29 Sampo Plc A 30 Stromsdal Corporation
31 Apetit Plc 32 Rautaruukki Corporation
33 Finnlines Plc 34 Silja Oyj Abp
35 Wartsila Corporation A 36 Wartsila Corporation
37 Tiimari Plc 38 Kemira Oyj
39 Ponsse Oyj 40 Viking Line Abp
41 Nokian Tyres Plc 42 Biohit Oyj B
43 Konecranes Plc 44 Stora Enso Oyj A
45 Stora Enso Oyj R 46 UPM-Kymmene Corporation
47 HKScan Oyj A 48 PKC Group Oyj
49 Incap Corporation 50 Atria Plc A
51 Payry PLC 52 Sponda Plc
53 Technopolis Plc 54 Valoe Oyj
55 Alma Media Corporation 1 56 Alma Media Corporation 2
57 Ramirent Plc 58 Fortum Corporation
59 Bittium Corporation 60 Yomi Plc
61 Rapala VMC Corporation 62 Sonera Oyj
63 Eimo Oyj 64 Innofactor Plc
65 Marimekko Corporation 66 SanomaWSOY Corporation A
67 Sanoma Corporation 68 Teleste Corporation
69 Oral Hammaslakarit Plc 70 Perlos Corporation
71 Metso Corporation 72 Talentum Oyj
73 Kesko Corporation A 74 Aldata Solution Oyj
75 Digia Plc 76 Solteq Oyj
77 Ixonos Plc 78 Aspo Plc
79 Aspocomp Group Plc 80 Dovre Group Plc
81 Trainers House Plc 82 Comptel Corporation
83 SSH Communications Security Oyj 84 Basware Corporation
85 Wulff Group Plc 86 Saunalahti Group Oyj
87 Etteplan Oyj 88 QPR Software Plc
89 eQ Oyj 90 Tekla Corporation
91 Sievi Capital plc 92 Sentera Plc
93 Okmetic Oyj 94 CapMan Plc B
95 Vacon Plc 96 eQ Oyj
97 Evox Rifa Group Plc 98 Componenta Corporation
99 Glaston Corporation 100 Tecnotree Corporation
101 Lassila & Tikanoja Plc 102 Suominen Oyj
103 Revenio Group Corporation 104 Biotie Therapies Corp.
105 Ilkka-Yhtyma Oyj 2 106 Neo Industrial Oyj
107 Orion Corporation A 108 Orion Corporation B
109 Raisio Plc K 110 Saga Furs Oyj C
111 YIT Corporation 112 Stonesoft Corporation
113 F-Secure Corporation 114 Chips Corporation B
115 Efore Plc 116 Hackman Oyj Abp
117 Honkarakenne Oyj B 118 Lemminkainen Corporation
119 Evia Oyj 120 Martela Oyj A
121 Olvi Plc A 122 Cramo Oyj
123 Tulikivi Oyj A 124 Elecster Oyj A
125 Vaisala Corporation A

49



Table D2: Estimate of sensitivity coefficient excluding Helsinki area

This table estimates the sensitivity coefficient, κ, using only firms and households outside of the Helsinki
area (with 5-digit postal codes). Panel A includes observations with ωpn = 0, replacing with ωpn = 1 (one
Finnish Mark, corresponding to approximately USD 0.17). Panel B excludes observations with ωpn = 0.
Univariate in column 2, including risk aversion in column 3, including risk aversion and stock distributions
in column 4, panel regression with postal code and stock fixed effects and robust standard errors double-
clustered at the postal code and firm level in column 5. Statistical significance levels: * = 0.01, ** = 0.001,
*** = 0.0001.

(1) (2) (3) (4) (5)

Panel A
Sensitivity coefficient, κ 4.228*** 3.868*** 3.771*** 3.771***
Standard error 0.069 0.071 0.073 0.630

log risk aversion, g
-average −3.806 −3.771
-max −1.097 −1.073
-min −12.393 −12.355

log distribution, s
-average 0
-max 5.418
-min −1.797

R2 0.051 0.308 0.487 0.487
Adj. R2 0.051 0.283 0.469 0.469
N = 69, 368

Panel B
Sensitivity coefficient, κ 1.824*** 1.892*** 2.754*** 2.754***
Standard error 0.074 0.082 0.071 0.325

log risk aversion, g
-average −8.072 −8.084
-max −2.681 −2.282
-min −12.392 −12.757

log distribution, s
-average 0
-max 1.787
-min −3.197

R2 0.028 0.249 0.501 0.501
Adj. R2 0.028 0.159 0.440 0.440
N = 20, 787
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Table D3: Estimate of sensitivity coefficient including only distant observations

This table estimates the sensitivity coefficient, κ, including only postal code/firm observation at distances
larger than d0, and excluding ωpn = 0 observations. Panel A sets d0 to 0.01, corresponding to a minimum
distance between postal codes of account holder and firm headquarter of about 8 miles, whereas in Panel
B d0 = 0.03, corresponding to a minimal distance of about 24 miles. Univariate in column 2, including
risk aversion in column 3, including risk aversion and stock distributions in column 4, panel regression with
postal code and stock fixed effects and robust standard errors double-clustered at the postal code and firm
level in column 5. Statistical significance levels: * = 0.01, ** = 0.001, *** = 0.0001.

(1) (2) (3) (4) (5)

Panel A
Sensitivity coefficient, κ 1.772*** 1.844*** 2.397*** 2.397***
Standard error 0.036 0.063 0.048 0.392

log risk aversion, g
-average −8.480 −7.899
-max −4.543 −2.282
-min −12.415 −12.609

log distribution, s
-average 0
-max 4.142
-min −3.952

R2 0.018 0.186 0.614 0.614
Adj R2 0.018 0.168 0.605 0.605
N = 129, 802

Panel B
Sensitivity coefficient, κ 0.931*** 0.991*** 1.662*** 1.662***
Standard error 0.039 0.070 0.053 0.326

log risk aversion, g
-average −8.187 −7.680
-max −4.000 −2.561
-min −11.798 −12.117

log distribution, s
-average 0
-max 4.067
-min −3.977

R2 0.005 0.160 0.599 0.599
Adj. R2 0.005 0.139 0.589 0.589
N = 119, 874
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