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Abstract

This paper studies how artificial intelligence (AI) affects the finance labor market when

humans and AI perform different tasks in investment projects, and workers earn agency

rents that grow with project size. We identify two key effects of AI improvement: A free-

riding effect raises worker rents by increasing the probability of successful investment

when the worker shirks; A capital reallocation effect shifts investment toward workers

with higher or lower rents, depending on which tasks AI improves. Contrary to standard

predictions, AI can raise both worker rents and labor demand. We derive implications

for capital allocation, labor demand, compensation, and welfare.
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Introduction

Since the public release of ChatGPT in November 2022, the number of tasks that artificial

intelligence (AI) can complete as well as high-skilled humans has grown rapidly. Finance

features spectacular examples of AI capabilities, including forecasting earnings on par with

human analysts (Cao et al., 2024), predicting stock price movements (Lopez-Lira and Tang,

2024), and even making corporate finance decisions (Campello et al., 2025). These are only

the latest developments in a longer trend towards automation in finance, which previously

relied on large datasets and machine learning.1

An extent literature in economics has relied on a “task-based approach” to study the

impact of automation on the labor market (e.g., Acemoglu and Restrepo (2018b)). Under

this approach, production requires the completion of different tasks, allocated to human

“workers” or to “machines”. In a competitive economy, workers’ wages and jobs are hurt

by improvements in the machine if they work on tasks that are substitutes to the machine.

Conversely, wages and jobs increase for complementary occupations.2 Under this approach,

the future looks bleak for finance workers: a recent report by Accenture ranks banking as

the sector of the economy as the sector with the highest share of working hours with “higher

potential for automation” (54% of hours), followed by insurance second (48%) and capital

markets fourth (40%).3

However, a competitive model may not be sufficient to explain the outcomes on the finance

labor market. Indeed, Philippon and Reshef (2012) document a premium for finance jobs

after 1990 that cannot be explained by standard factors. This unexplained component is

likely an agency rent, due to the widespread use of incentive pay in finance. Célérier and

Vallée (2019) confirm this hypothesis, and also point out the role of high complementarity

1See, e.g., Abis and Veldkamp (2023) for the case of asset management, and Bonelli (2025) for venture
capital. For an industry view, see for instance “We have ‘surrendered more to the machines’, says quant fund
titan Cliff Asness”, Financial Times, 4 June 2025.

2Some substitution may have already occurred during the “big data” wave of the 2010s. Abis and Veld-
kamp (2023) show that over 2010-2018 the production function of the asset management industry has changed
in a way that requires fewer workers to analyze a given stock of data, which reduced the labor share of income
by 5%.

3Bick et al. (2024) report that the use of AI at work was already widespread in the U.S. financial sector
in August 2024, with 38.1% of respondents in “Business / Finance” occupations reporting using AI at least
once a week.
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between talent and project size as an explanation of the finance wage premium.

In this paper, we ask how the finance labor market is impacted by the development of

“machines” that are substitutes to workers, taking into account that workers are paid for

performance, and that their rents increase with project size.

To answer this question, we consider a model in which investors optimally allocate capital

to heterogeneous “financiers” (e.g., banks or active mutual funds) and to a risk-free asset.

Each financier has access to an investment project, with a marginal cost increasing in project

size. The success of the project depends on the completion of a continuum of tasks, which

can be performed by either a worker or a machine. The worker and the machine are perfectly

substitutable on a given task, and tasks are perfectly substitutable to each other. The

machine is free to use, while the worker is subject to moral hazard. The worker is more

productive than the machine at least on some “high-level” tasks. We interpret AI as a

machine that is also productive on many high-level tasks. The financier has to decide which

tasks to allocate to the machine and to the worker, and what contract she offers to the worker.

The market for capital is competitive, so that financiers need to maximize the expected return

they offer to investors.

We obtain that machines impact the labor market very differently from what would hap-

pen in a competitive model. Two important effects are at play. First, as long as the financier

decides to use the worker, machine improvement has a “free-riding effect”: the worker is paid

conditionally on success, and a better machine increases the probability of success even when

the worker shirks. This leads to higher rents for the worker. Second, machine improvement

leads to a reallocation of capital across financiers, a “capital reallocation effect”. This effect

can be positive or negative, depending on which tasks are affected by machine improvement.

Overall, we find that under many configurations these two effects lead to larger total

rents for workers in the financial sector (sometimes, shared across fewer workers). In fact,

there are only two cases when machine improvement can be negative for workers: (i) if

the machine improves so much that it is no longer necessary to incentivize workers; (ii) if

machine improvement disproportionately affects tasks already allocated to machines, which,

according to our interpretation, is not the case of generative AI for instance. Thus, our

conclusion is that current developments in AI in finance may in large part be appropriated
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by workers, contrary to what a standard competitive model would predict. More broadly,

our results suggest that empirical research on the consequences of automation on the labor

market should look into the moral hazard component of occupations in addition to the tasks

involved.4

Our model delivers several additional insights and predictions.

First, if a financier uses a worker in equilibrium, then too many tasks are allocated to the

worker relative to a benchmark without moral hazard. Indeed, the worker earns a rent based

on the success of the project, and is not rewarded for the marginal disutility of work. Hence,

allocating a marginal task to the worker is free, from the financier’s perspective. This result

implies that the machine is under-used at the intensive margin.5 Hence, it is possible that

the potential for automating finance tasks will not be fully realized, because the efficiency

gains would be captured by workers.6

Second, if capital is scarce in the economy, so that investors allocate all of it to the

financiers, the result above implies that total labor demand is higher in equilibrium than in

the absence of moral hazard. Hence, finance workers both earn more rents and are more

numerous, due to the presence of moral hazard. If capital is abundant instead, investors

allocate some of their capital to the risk-free asset. Without moral hazard the financiers

would offer higher returns, attract more capital, and this would create a need for more

workers.

Third, we can study different forms of machine improvement, which will have different

consequences via the reallocation effect. More specifically, our model assumes two types

of financiers: high types financiers have access to a more productive worker, and low type

financiers to a less productive worker. Low type financiers optimally use the machine more

than high types. An improvement in the machine will thus tend to benefit the low types more.

However, there is a second effect: because project failure is a less informative signal of shirking

for low type workers, they actually earn higher rents. When the machine improves, such

4This could be done across industries/plants using measures of management practices (Bloom et al., 2019).
In the case of finance, Efing et al. (2022) have employee-level data on bonuses in banks.

5There is a less surprising effect at the extensive margin: agency rents make the worker more expensive,
and if they are too high the financier may decide to not rely on the worker at all. The machine is then
over-used.

6In fact, a hypothesis for why the potential for automation is high in finance is precisely that the presence
of rents has slowed down the adoption of previous waves of automation.
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workers capture a higher fraction of the surplus created by machine improvement. Depending

on the balance between these two effects, machine improvement may have a stronger impact

on the performance of high type financiers, or low type financiers. This impact in turn will

lead investors to reallocate capital from one type to the other.

To understand the balance between these two effects, we consider two special cases of

machine improvement:

In the case of a “core” improvement, only tasks that both types of financiers allocate to

the machine improve. An example would be advances in data analysis. Then the success

probability increases by the same amount for both types of financiers, but high types leave a

lower fraction of the surplus as rents to the worker. As a result, capital is reallocated towards

high type financiers. As high type financiers use more labor and have lower rents, the capital

reallocation effect is positive for labor and negative for rents.

In the case of a “frontier” improvement, only tasks that low type financiers allocate to the

machine improve. An example would be advances in the use of AI for tasks usually allocated

to humans. Then the success probability increases only for low type financiers, who attract

more capital. The capital reallocation effect is then negative for labor but positive for rents.

Finally, we compute total welfare in our model as the sum of payoffs to investors, fi-

nanciers, and workers. Despite machine improvement expanding the production set, this is

not necessarily welfare improving in the presence of rents. We show in particular that welfare

decreases if a machine improvement leads some financiers to stop using the worker. Indeed,

if the machine improves sufficiently, a financier can offer a better return to investors by rely-

ing only on the machine and reducing the worker’s rents to zero. However, the total return

of the financier’s project, which includes the part appropriated by the worker, inefficiently

decreases. In fact, in the absence of moral hazard, it is never optimal to use the machine

only.

The last section of the paper develops two extensions.

First, we modify the production function of the financier so that the machine and the

worker are perfect complements on every task. We show that the free-riding effect still

obtains in that setup, implying that substitutability is not a necessary condition for ma-

chine improvement to increase workers’ rents. However, we also show that complementarity
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makes rents lower, which diminishes the impact of machine improvement. Indeed, agency

rents derive from the worker being able to shirk and still succeed with a high probability.

Under complementarity, not exerting effort also decreases the productivity of the machine,

which decreases the success probability more than under subtitutability. This suggests that

machine improvement can increase workers’ rents more under substitutability than under

complementarity, the opposite of what happens in the absence of moral hazard.

Second, we consider an extension in which the allocation of tasks is controlled by the

worker, and is not observable by the financier. This would correspond for instance to a

covert use of generative AI by employees. In this case, workers earn even higher rents,

because they need to be incentivized to work on tasks instead of only relying on the machine.

We show that the free-riding effect is still present, so that machine improvement can still

increase workers’ rents. However, there is also a second effect: as the machine improves,

it is in the financier’s interest that the machine is used on more tasks. Hence, it is less

necessary to disincentivize the worker’s covert use of the machine, so that his compensation

and rents decrease. This result suggests that empirical research should ideally separate tasks

and occupations where the use of machines is controlled by the firm from cases where it is

not.

The remainder of this paper is organized as follows. Section 1 positions our paper in

the literature. Section 2 describes the model, which we then solve in Section 3, both in the

baseline version and in a benchmark version without moral hazard. Section 4 compares these

two versions to identify the impact of moral hazard and Section 5 derives comparative statics

results on machine improvement. Section 6 develops the two extensions mentioned above.

Section 7 concludes. The figures and proofs omitted from the main text are in the appendix.

1 Literature Review

Our paper contributes to the theoretical literature on the determinants of pay in the financial

sector, more specifically models relating the finance wage premium to the severity of moral

hazard problems in finance (in particular Axelson and Bond (2015), Biais and Landier (2020),

and Hoffmann et al. (2022)). Other explanations for high remunerations include the screening
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of the most talented workers (Bond and Glode, 2014), and excessive competition to attract

talent into an industry with negative externalities (Thanassoulis, 2012) or fixed-sum surplus

(Glode and Lowery, 2016).

We are aware of only two papers in this literature that consider the impact of technology.

In Glode and Ordoñez (2024), firms can use technology either to create more surplus or

to appropriate the surplus created by other firms. Surprisingly, as technology improves,

more resources will (inefficiently) be allocated to appropriation, regardless of the type of

improvement. We share the result that even a surplus-improving technology can increase

rents, but our mechanism is different and gives predictions on the impact of technological

change within a given activity. Tena (2020) studies a dynamic model of moral hazard and

shows that the mere anticipation of future automation forces the principal to give high rents

to the agent ex ante. These rents then decrease when automation becomes feasible. Our

model does not have these interesting dynamics, but it has several tasks and firms. In

particular, we show that partial automation can increase rents ex post, which is not possible

in a single-task model.

At a broader level, our paper contributes to a growing literature that studies the au-

tomation of tasks and its impact on labor market outcomes. We refer the reader to, e.g.,

Autor (2015), Acemoglu and Restrepo (2018a), and Agrawal et al. (2019) for overviews of

this literature. A common theme is that machines can substitute humans on some tasks,

but humans then become more productive in complementary tasks.7 Assuming standard

competitive markets for goods and labor, whether workers benefit from automation depends

on the relative strengths of the substitution and complementarity effects.8 Our contribution

to this literature is to integrate moral hazard and capital allocation in an otherwise simple

task-based model of automation.9 We obtain very different predictions for the impact of ma-

7Brynjolfsson et al. (2018) measure the task content of occupations and point out that few occupations
only consist in tasks suitable to machine learning.

8Empirically, the evidence is mixed. Gregory et al. (2021), Babina et al. (2024), and Aghion et al. (2025)
report evidence consistent with a positive impact of machines or specifically AI on aggregate labor demand.
However, Acemoglu et al. (2022), Kogan et al. (2023), Bonfiglioli et al. (2024), or Eisfeldt et al. (2025) also
provide evidence of a strong substitution effect. In line with our point that a competitive framework may
not tell the whole story, Jiang et al. (2025) show empirically that even in the case of complementarity, AI
does not necessarily benefit workers, who work longer and are not compensated in proportion. Part of the
explanation is market power on the firm’s side, and the possibility to use AI to monitor workers and reduce
their agency rents.

9Acemoglu (2021) allows for a simpler form of worker rents in a task framework by assuming the presence
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chine improvement, suggesting that it may be worthwhile for empirical research to separate

occupations not only according to their task content, but also to the extent of moral hazard

they are exposed to.

Our paper also relates to a growing literature on how technological advancements affect

the asset management industry. Farboodi and Veldkamp (2020) explore how new technologies

shift asset managers’ effort allocation between acquiring information about fundamental val-

ues and anticipating others’ demand. Dugast and Foucault (2025) and Bonelli and Foucault

(2025) examine how big data influences quantitative and discretionary managers dispropor-

tionately. Sheng et al. (2024) show that hedge funds have started adopting generative AI,

with a positive impact on their performance.10 Zhang (2024) shows that AI adoption can

help fund managers identify investment opportunities. Much of this literature either ab-

stracts from agency considerations, which are central to our paper, or focuses on specialized

technologies (e.g., alternative data) accessible only to a subset of managers.

A growing literature documents the impact of AI and more broadly technological change

on other segments of the financial industry.11 Bertomeu et al. (2025) provide evidence that

financial analysts use ChatGPT, which makes them more accurate. Grennan and Michaely

(2020) show that, several years before, analysts were already displaced by AI, with some ex-

iting the industry and others focusing on different tasks. Dessaint et al. (2024) find evidence

that analysts allocate more effort to tasks where they are more complementary with new

technology. Jiang et al. (Forthcoming) provide evidence of reallocation for finance jobs most

exposed to innovations in the FinTech sector. Finally, Eisfeldt and Schubert (2025) system-

atically measure the exposure of all finance occupations to generative AI. Our model offers

new predictions, more specific to finance, that can be tested in this literature. In particular,

an important prediction is that workers should earn higher rents when technology improves,

provided that they are not entirely displaced by AI.

Finally, while the main application of our model is the financial industry, our insights

can be applied to other sectors and more broadly to any employees or managers who earn

of a binding minimum wage.
10Interestingly, non hedge funds are not impacted and the disparity in returns between the two groups

increases. In our model this would lead to a capital reallocation effect.
11Central banks and financial regulators are impacted too, see Aldasoro et al. (2024).
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rents due to moral hazard. This relates our paper to a broader literature in economics and

management on how to organize the collaboration between humans and machines. Boyacı

et al. (2024) and de Véricourt and Gurkan (Forthcoming) for example explore theoretically

how a human decision-maker can best exploit a machine on a prediction task. This literature

in general does not consider moral hazard frictions. An important exception is Athey et al.

(2020), who study a delegation game in which a principal can delegate a decision to either a

human agent or an AI, but cannot use transfers to align incentives with the agent. A better

machine increases the agent’s rent and is thus not always preferred by the principal.12 With

transfers and heterogeneous agents, we show that the principal always benefits from machine

improvement, while total rents may decline due to capital reallocation.

Several papers in this literature use experiments (conducted either in the laboratory or

in actual firms) to study the impact of machines on employee performance and the potential

obstacles to adoption (e.g., Fugener et al. (2020), Allen and Choudhury (2022), Wang et al.

(2024), Brynjolfsson et al. (2025)). A recurrent empirical result is that some employees, in

particular more senior ones, are more skeptical of the benefits of AI and more reluctant to

use it. Our model suggests a rational explanation based on the concern of losing existing

rents.13 Organizing work and compensation in a way that alleviates such concerns could then

lead to quicker AI adoption.

12Zhong (2025) extends the problem of Athey et al. (2020) to a multi-stage decision problem, focusing on
the optimal design of the decision process that integrates humans and AI to minimize decision errors. In
a competitive framework with hierarchical labor structures, Ide and Talamas (2024) and Ide and Talamas
(Forthcoming) show that, due to the complementarity between the knowledge of solvers (more knowledge-
able) and workers (less knowledgeable), AI and its improvement with different capabilities have different
implications for labor outcomes. In contrast, the heterogeneous effect results in our model arises from dif-
ferences in informational rents, a feature common in many knowledge-intensive occupations. Also but less
related is Alonso and Câmara (2024), who consider the problem of a firm having to take a decision based on
data analysis, when the manager in charge of the analysis has the possibility to tamper with the results.

13An interesting paper in this direction is Ye (2025), which shows that AI assistance has made it more
difficult for programmers to signal their skills by sharing their code, prompting programmers to reallocate
their effort towards other tasks with a higher signaling content.
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2 Setup

2.1 Economic environment

We consider a two-period economy with a risk-free asset, risky projects, a continuum of

investors, and a continuum of financiers who can invest in the projects on the investors’

behalf.

Investors have one unit of capital each, and form a continuum of total mass K, the total

capital in this economy. At t = 1, each investor can either invest his capital in a risk-free

asset or allocate it to a financier, according to a contract defined below. The risk-free asset

pays a net return normalized to zero in t = 2.

There is a continuum [0, NL +NH ] of financiers. The total capital allocated to financier

n is denoted kn. Each financier invests her capital kn in a project at t = 1, and incurs some

management costs knχ(kn), with χ′(kn) ≥ 0, χ(0) = 0, and lim
kn→+∞

χ(kn) = +∞. Thus, the

total management costs are an increasing and convex function of kn. The project can either

succeed or fail in t = 2. A successful investment brings a gross payoff of R > 1 per unit of

capital invested, whereas a failed investment brings a gross payoff of 0.

The probability that the investment is successful depends on the completion of a con-

tinuum x ∈ [0, 1] of tasks. The weight of task x is f(x), where f is an integrable function,

F (x) =
∫ x

0
f(z)dz, and F (1) = 1.

Each task can be performed by a human (the “worker”) working for the financier, or by

a machine, where an(x) denotes the fraction of the task allocated the machine, hn(x) the

fraction allocated to the worker, and an(x) + hn(x) ≤ 1. The productivity of the machine

on task x is qM(x). The worker associated with financier n has a productivity equal to enqn,

where en ∈ {0, 1} is the financier’s effort. The worker associated with financier n has qn = qL

if n ∈ [0, NL] (“type L” financiers and workers), and qn = qH if n ∈ [NL, NL + NH ] (“type

H” financiers and workers). We assume 0 < qL < qH < 1.14

These ingredients determine the probability yn(en) that financier n’s investment is suc-

14Our modeling of the financial sector is close to Bond and Glode (2014), with the addition of tasks and a
machine, but the limitation that workers’ allocation to financiers is fixed.
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cessful, with:

yn(an, hn, en) =

∫ 1

0

[an(x)qM(x) + hn(x)enqn] f(x)dx. (1)

Without loss of generality we assume that q′M(x) ≤ 0: tasks are ranked from more to less

machine-friendly. In particular, we think of AI as a machine such that qM decreases slowly

and is thus high for many tasks. In contrast, the worker is equally good at all tasks. Moreover,

we assume qM(0) > qH (the machine is more productive than the worker for the first task),

and qM(1) = 0 (the machine is useless on the last task). Finally, we denote QM(x̄) the

average productivity of the machine for tasks below x̄:

QM(x̄) =

∫ x̄

0

qM(x)f(x)

F (x̄)
dx. (2)

The success probability cannot be larger than 1. Moreover, we assume that the financier

could offer a positive net return equal to RQM(1)− 1 by using the machine only:

1

R
< QM(1) < 1. (3)

Exerting effort costs C(en, hn, kn) = cknen
∫ 1

0
hn(x)f(x)dx to the worker: it is proportional

to the number of tasks allocated to him and to the total capital allocated. The cost of using

the machine is assumed to be zero, or negligible relative to the cost of effort. We assume

that effort is economically efficient:

c < RqL. (4)

All agents in the economy are risk-neutral. Each investor wants to maximize the expected

return on his savings, and each financier wants to maximize the total profit of her project,

net of the worker’s compensation and the return offered to investors. A financier can choose

to not receive any capital and obtain a utility of zero. Similarly, a worker can choose to not

work for the financier and obtain a utility of zero.
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2.2 Contracting environment

Financiers competitively offer contracts to investors. An investor who accepts a contract

allocates his unit of capital to the financier, the financier invests this capital into her project,

and will then return the proceeds of the investment to the investor, minus a compensation

for the worker and a fee for the financier.

We assume that the type of each financier is known to investors. Moreover, in the baseline

model the allocation of tasks (the functions an and hn) is observable too. However, the

worker’s effort is not, which creates a moral hazard or agency problem, in which the financier

is the principal and the worker is the agent.

As contracts are offered competitively, in equilibrium they need to maximize the return

to the investor (under constraints) and the financiers’ fees are zero. As the worker is risk-

neutral, standard arguments imply that to solve the moral hazard problem it is sufficient to

look at contracts specifying a payment wnkn to the worker if the project is successful, and

the worker receives no payment in case of failure.

Thus, the contract offered by financier n is fully characterized by Cn = {qn, an, hn, wn}.

The investor accepting this contract knows that the financier is of type qn, allocates a fraction

an(x) of task x to the machine and hn(x) to the worker, and the worker will receive a

compensation wn per unit of capital in case the project is successful.

2.3 Equilibrium definition

An equilibrium of the model is fully characterized by the contracts Cn = {qn, an, hn, wn}

offered by each financier and the capital kn allocated to her by the investors, for n ∈ [0, NL+

NH ]. The contracts and the capital allocation form an equilibrium if and only if the following

conditions are satisfied: (i) incentive compatibility constraints of workers; (ii) participation

constraints of workers; (iii) each contract maximizes the return to investors; (iv) investors’

capital allocation is privately optimal.

(i) If the worker exerts effort, he suffers a disutility C(1, hn, kn) and receives wnkn with

probability yn(an, hn, 1), whereas if he does not he suffers no disutility but receives wnkn with
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probability yn(an, hn, 0) only. This gives us the incentive compatibility constraint:

en = 1 only if knyn(an, hn, 1)wn − C(1, hn, kn) ≥ knyn(an, hn, 0)wn. (IC)

(ii) If the worker exerts effort, the contract has to give him a positive utility. This gives the

following participation constraint:

en = 1 only if knyn(an, hn, 1)wn − C(1, hn, kn) ≥ 0. (PC)

(iii) The return per unit of capital allocated to financier n writes as:

αn(kn, a, h, e, w) = rn(a, h, e, w)− χ(kn), (5)

with rn(a, h, e, w) = yn(a, h, e)(R− w)− 1. (6)

Note that we decompose the total return to the investor αn as a return gross of management

costs rn, minus management costs χ(kn). This decomposition will be useful below.

The contract offered by the financier needs to maximize αn, which gives:

(an, hn, en, wn) ∈ arg max
a,h,e,w

αn(kn, a, h, e, w) s.t. (IC), (PC),∀x ∈ [0, 1], a(x) + h(x) ≤ 1.

(MAX)

(iv) Denote ᾱ = max
n

αn(kn, an, hn, en, wn) the maximum return offered across all financiers.

Optimal allocation by the investors implies that all financiers receiving a positive amount

of capital must offer the same return. Moreover, if investors allocate some capital to the

risk-free asset in equilibrium, then this return has to be zero. This gives us the following

optimal allocation conditions:

∀n ∈ [0, NL +NH ], kn > 0 only if αn(kn, an, hn, en, wn) = ᾱ,

and kn = 0 only if αn(kn, an, hn, en, wn) ≤ ᾱ, (OA1)

ᾱ > 0 only if

∫ NL+NH

0

kndn = K. (OA2)

12



3 Equilibrium

3.1 Complete information benchmark

As a benchmark, we first solve the model assuming that the worker’s effort is observ-

able, so that there is no moral hazard and we remove the constraint (IC). We denote

C∗
n = {qn, a∗n, h∗

n, w
∗
n} the equilibrium contracts in this benchmark model, and k∗

n the equilib-

rium capital allocation.

We conjecture that any financier n with kn > 0 will choose en = 1, so that the worker

exerts effort and the participation constraint (PC) will be binding. We can then solve for

the worker’s compensation as:

w∗
n =

c
∫ 1

0
h∗
n(x)f(x)dx

yn(a∗n, h
∗
n, 1)

. (7)

Financier n will then maximize the return for investors, and (MAX) becomes:

(a∗n, h
∗
n) ∈ argmax

a,h
R

∫ 1

0

[a(x)qM(x) + h(x)qn]f(x)dx− c

∫ 1

0

h(x)f(x)dx (8)

s.t. ∀x ∈ [0, 1], a(x) + h(x) ≤ 1.

This program has a simple solution. Define x∗
n the threshold task such that using the worker

or the machine is equally profitable:

R[qM(x∗
n)− qn] + c = 0. (9)

The solution to (8) is then to choose a∗n(x) = 1 and h∗
n(x) = 0 if x ≤ x∗

n, and a∗n(x) = 0

and h∗
n(x) = 1 otherwise. Note that our assumptions on qM and qn guarantee the existence

of a unique x∗
n in (0, 1). Moreover, as a solution with en = 0 would be equivalent to setting

x∗
n = 1, the result that x∗

n < 1 validates our conjecture that en = 1. We can then compute
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the probability of success and the return gross of management costs as:

y∗n =

∫ x∗
n

0

qM(x)f(x)dx+

∫ 1

x∗
n

f(x)dx

= F (x∗
n)QM(x∗

n) + [1− F (x∗
n)]qn, (10)

r∗n = Ry∗n − c[1− F (x∗
n)]− 1. (11)

We now turn to the optimal allocation of capital by investors. First, note that r∗n will be

the same for all n with the same type. Second, as α∗
n = r∗n − χ(k∗

n), (OA1) implies that

all financiers of a given type receive the same capital, possibly null. Hence, we denote

r∗n = r∗L, k
∗
n = k∗

L, and α∗
n = α∗

L for n ∈ [0, NL], and r∗n = r∗H , k
∗
n = kH , and α∗

n = αH for

n ∈ [NL, NL +NH ].

Note that we necessarily have r∗H > r∗L. Hence, we cannot have k∗
H < k∗

L, since this

would imply α∗
L < α∗

H and yet k∗
L > 0, contradicting (OA1). This implies that there are

three possible types of equilibrium allocation by investors: (i) they allocate K to the type

H financiers only; (ii) they allocate K to the type L and type H financiers only; (iii) they

allocate less than K to the type H and type L financiers, and the rest to the risk-free asset.15

Which type of equilibrium obtains depends on the total supply of capital as follows:

Proposition 1. Define the following thresholds:

K0(rL, rH) = NHχ
−1(rH − rL) (12)

K1(rL, rH) = NHχ
−1(rH) +NLχ

−1(rL). (13)

We have 0 < K0(r
∗
L, r

∗
H) < K1(r

∗
L, r

∗
H) and: (i) for K < K0(r

∗
L, r

∗
H), all capital is allo-

cated to type H financiers, NHk
∗
H = K, k∗

L = 0, and α∗
H > α∗

L > 0; (ii) for K ∈

[K0(r
∗
L, r

∗
H), K1(r

∗
L, r

∗
H)), all capital is allocated to both types of financiers, NHk

∗
H+NLk

∗
L = K,

and α∗
L = α∗

H > 0; (iii) for K ≥ K1(r
∗
L, r

∗
H), capital is allocated to both types of financiers

and to the risk-free asset, NHk
∗
H +NLk

∗
L < K, and α∗

L = α∗
H = 0.

Figure 1 below plots the different equilibrium regions as a function of c and K. When

15It is easy to see that investors cannot allocate to type H financiers and the risk-free asset, but not to
type L financiers. If this were the case, (OA2) would imply that r∗H − χ(k∗H) = 0. Type L financiers would
offer a return α∗

L = r∗L − χ(0) > 0, which contradicts (OA1).
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there is little capitalK to allocate, all of it can be allocated to the type H financiers, and they

can offer a higher return than the type L. As K increases, this return is diminished by the

costs χ(k∗
H), and at some point the type L financiers can offer an equally good return if k∗

L is

sufficiently small, so that both types receive capital. As K increases further, the management

costs increase and eventually both types of financiers can only offer a zero return. Any extra

capital is then allocated to the risk-free asset.

[Insert Figure 1 here.]

3.2 Equilibrium with moral hazard

We now turn to the main model with moral hazard, and solve for the equilibrium contract

C∗∗
n = {qn, a∗∗n , h∗∗

n , w∗∗
n } and capital allocation k∗∗

n .

For a given contract {qn, a, h, w} and capital k, denote Un(a, h, w, e) the worker’s util-

ity from exerting effort e for financier n, per unit of capital, so that his total utility is

kUn(a, h, w, e). We have:

Un(a, h, w, e) = w

∫ 1

0

[qM(x)a(x) + qneh(x)]f(x)dx− ce

∫ 1

0

h(x)f(x)dx. (14)

The worker will optimally exert effort if and only if Un(a, h, 1, w) ≥ Un(a, h, 0, w), which

reduces to w ≥ w̃n, with:

w̃n =
c

qn
. (15)

Hence, the optimal contract will be to either offer w̃n, or to not rely on the worker at all. In

this section, for any variable of interest X, we denote X̃n its value at the optimal solution

under the assumption that financier n uses the worker. Similarly, X̃M denotes the value at

the optimal solution under the assumption that the worker is not used, where “M” stands

for “machine only” (note that this solution does not depend on the financier’s type). Finally,

X∗∗
n ∈ {X̃n, X̃M} denotes the value at the actual optimal solution.
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If financier n relies on the worker, she maximizes the return for investors according to:

(ãn, h̃n) ∈ argmax
a,h

(
R− c

qn

)∫ 1

0

[a(x)qM(x) + h(x)qn]f(x)dx (16)

s.t. ∀x ∈ [0, 1], a(x) + h(x) ≤ 1.

The solution is to choose ã(x) = 1, h̃(x) = 0 for x ≤ x̃n and ã(x) = 0, h̃(x) = 1 otherwise,

with x̃n such that:

qM(x̃n) = qn. (17)

This gives us the probability of success and return gross of management costs:

ỹn = F (x̃n)QM(x̃n) + [1− F (x̃n)]qn, (18)

r̃n =

(
R− c

qn

)
ỹn − 1. (19)

Alternatively, financier n can choose to not use the worker. In that case, given that using

the machine is free, it is optimal to choose ãM(x) = 1 for every x ≤ x̃M = 1. Thus:

ỹM = QM(1), (20)

r̃M = RQM(1)− 1. (21)

Financier n finds it optimal to use the worker if and only if r̃n ≥ r̃M , which writes as:

R

∫ 1

x̃n

[qn − qM(x)]f(x)dx︸ ︷︷ ︸
Worker’s added value

≥ c[1− F (x̃n)]︸ ︷︷ ︸
Effort cost

+
c

qn
F (x̃n)QM(x̃n)︸ ︷︷ ︸

Rents

. (22)

This equation states that it is optimal to use the worker rather than only the machine if

the value of increasing the success probability (on the left-hand side) is larger than the

total expected compensation given to the worker, which is the sum of his effort cost and

informational rents due to moral hazard. Note that, due to assumption (4), in the absence

of rents, (22) would always hold, as it does in the complete information benchmark. Instead,

in the presence of moral hazard, whether it is optimal to use the worker will depend on the
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cost of incentivizing him. To see that, define:

ĉn = Rqn

∫ 1

x̃n
[qn − qM(x)]f(x)dx

qn[1− F (x̃n)] + F (x̃n)QM(x̃n)
= Rqn

ỹn −QM(1)

ỹn
. (23)

It is easy to see that ĉH > ĉL, which corresponds to the fact that the type H worker is more

productive than the type L. We then deduce from (22) the following result:

Lemma 1. Type H and type L financiers allocate tasks as follows: (i) if c < ĉL, x
∗∗
n = x̃n for

any n ∈ [0, NL +NH ]: both types of financiers use the worker; (ii) if c ∈ [ĉL, ĉH), x
∗∗
n = 1 for

n ∈ [0, NL] and x∗∗
n = x̃n for n ∈ [NL, NL +NH ]: only type H financiers use the worker; (iii)

if c ≥ ĉH , x
∗∗
n = 1 for any n ∈ [0, NL +NH ]: both types of financiers use only the machine.

We can finally solve for the equilibrium capital allocation. The reasoning is the same as

in the complete information benchmark (Proposition 1). It also has to be the case that k∗∗
n

is equalized for all n ∈ [0, NL] and denoted k∗∗
L , and similarly k∗∗

H for all n ∈ [NL, NL +NH ].

Only the definition of the returns offered by the financiers is different:

Proposition 2. For n ∈ {L,H}, we have r∗∗n = r̃n if c < ĉn and r∗∗n = r̃M otherwise. Define

K∗∗
0 = K0(r

∗∗
L , r∗∗H ) and K∗∗

1 = K1(r
∗∗
L , r∗∗H ).

Then (i) for K < K∗∗
0 all capital is allocated to type H financiers, NHk

∗∗
H = K, k∗∗

L = 0,

α∗∗
H > α∗∗

L > 0; (ii) for K ∈ [K∗∗
0 , K∗∗

1 ), all capital is allocated to both types of financiers,

NHk
∗∗
H +NLk

∗∗
L = K, and α∗∗

L = α∗∗
H > 0; (iii) for K ≥ K∗∗

1 , capital is allocated to both types

of financiers and to the risk-free asset, NHk
∗∗
H +NLk

∗∗
L < K, and α∗∗

L = α∗∗
H = 0.

Note that in the case where c > ĉH we have r∗∗L = r∗∗H = r̃M and hence K0(r
∗∗
L , r∗∗H ) = 0.

Thus, in the case where c is so high that even type H financiers do not use the worker, both

types necessarily receive capital in equilibrium (since they offer the same returns). Also note

that ĉL < RqL but ĉH can be higher than RqL, in which case Assumption (4) implies that

the case c > ĉH is empty. Figure 2 below plots the different equilibrium regions as a function

of c and K.

[Insert Figure 2 here.]
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4 Equilibrium Impact of Moral Hazard

The motivation for our model is that the extent of moral hazard makes finance occupations

special, which may change how they are affected by new technologies. To better understand

the impact of moral hazard in the model, this section compares the outcomes obtained in

the equilibrium with moral hazard and in the complete information benchmark.

We first derive a simple observation from Sections 3.1 and 3.2:

Corollary 1. For a given capital kn allocated to financier n: (i) if c < ĉn, x
∗∗
n < x∗

n < 1:

moral hazard leads to under-using the machine; (ii) if c ≥ ĉn, x
∗
n < x∗∗

n = 1: moral hazard

leads to over-using the machine.

Two different forces are at play in these two cases. When c is small, tasks are allocated

both to the worker and to the machine in the presence of moral hazard. The worker derives

rents, shown in (22), and is compensated based on success and not based on the effort spent,

as the participation constraint is slack. This implies that the worker does not need additional

compensation for working on a marginal task. Hence, from the perspective of the financier,

allocating more tasks to the worker is free at the margin, whereas under complete information

the cost of effort c would be taken into account. This implies that the worker will be allocated

tasks x he is better at (qn > qm(x)), but not tasks on which he is more efficient (which would

be Rqn − c > Rqm(x)). Hence, the worker is allocated too many tasks in the presence of

moral hazard, and the machine too few.

The second force at play is more obvious: moral hazard makes the worker more expensive

overall, and more so when c is higher. For a high enough c, the financier prefers to not

use the worker at all and to rely on the machine only. While this necessarily decreases the

success probability yn, the financier saves on the rents she would have to give to incentivize

the worker.

Second, we analyze how moral hazard affects the equilibrium allocation of capital. This

depends in turn on how the returns offered by both types of financiers are affected. We derive

an important preliminary result:

Proposition 3. There exists c̃ ∈ (ĉL, ĉH) such that r∗∗H − r∗∗L ≥ r∗H − r∗L if and only if c ≤ c̃.
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This Proposition states that, when the cost of effort c is low, moral hazard makes the

performance of both types of financiers more unequal. This is true in particular when both

types of financiers use the worker. Conversely, when c is high, moral hazard makes the

performance of both types of financiers more equal. This is true in particular when no type

of financier uses the worker.

The intuition for the case c > ĉH is clear: in that case both types of financiers use the

machine only and offer exactly the same return. For the opposite case c < ĉL, note that

r∗∗H − r∗∗L ≥ r∗H − r∗L is equivalent to r∗L− r∗∗L ≥ r∗H − r∗∗H . The latter condition means that type

L financiers are more negatively affected by moral hazard than type H financiers. This is

true when both types use the worker: by exerting effort on task x a type L worker increases

the success probability by qLf(x)dx, against qHf(x)dx for a type H, with qH > qL. Hence,

success is a less informative signal about effort for a type L worker, and incentivizing this

type is more expensive. Mathematically, (15) shows that w̃n decreases in qn.

We can use Proposition 3 to study how moral hazard affects which types of financiers

receive capital in equilibrium:

Corollary 2. Suppose χ(k) is linear in k. k∗∗
H − k∗∗

L ≥ k∗
H − k∗

L if and only if c ≤ c̃: moral

hazard makes the allocation of capital more unequal between type H and type L financiers for

low c, and more equal otherwise.

When c is low, the two types of financiers offer more different returns under moral hazard,

which leads to a more unequal capital allocation. The opposite is true when c is high. The

condition that χ(k) is linear is required only when K > K∗∗
1 .

We conclude this section by studying how moral hazard affects the equilibrium level of

labor. For a given set of contracts Cn = {qn, an, hn, wn} and capital allocations kn, we define

total labor L as the total effort exerted by workers across all n:

L =

∫ NL+NH

0

knen

(∫ 1

0

hn(x)f(x)dx

)
dn. (24)

We denote L∗ the total labor in equilibrium under complete information, and L∗∗ under moral

19



hazard. We have:

L∗ = NHk
∗
H [1− F (x∗

H)] +NLk
∗
L[1− F (x∗

L)], (25)

L∗∗ = NHk
∗∗
H [1− F (x∗∗

H )] +NLk
∗∗
L [1− F (x∗∗

L )]. (26)

The difference between L∗ and L∗∗ is driven by three effects: (i) x∗∗
n ≤ x∗

n: each financier uses

the worker for more tasks in the presence of moral hazard (Corollary 1); (ii) k∗∗
H −k∗∗

L ≥ k∗
H−k∗

L

if and only if c ≤ c̃: for a given total capital allocated to financiers, moral hazard shifts the

allocation towards the more labor-intensive type H financiers if c is low, and towards the less

labor-intensive type L financiers otherwise (Corollary 2); (iii)NHk
∗∗
H +NLk

∗∗
L ≤ NHk

∗
H+NLk

∗
L:

there is weakly less capital allocated to the financiers under moral hazard.

The combination of these three effects can in general go in either direction. In particular,

there is a case in which (i) and (ii) go in the same direction, and (iii) is null, such that

counter-intuitively the presence of moral hazard leads to more labor in equilibrium:

Corollary 3. Assume c < ĉL and K < K∗∗
1 . Then equilibrium labor is higher under moral

hazard than under complete information: L∗∗ > L∗.

The corollary implies more generally that workers can benefit from the existence of moral

hazard. Not only the workers earn rents, which they do not under complete information,

but despite labor being more costly the demand for labor can actually be higher. When this

happens, both the number of employees and their remuneration increase due to the presence

of moral hazard.

5 Machine Improvement

We now study how an improvement in the machine affects the equilibrium in the presence of

moral hazard. We assume that machine productivity can be written as:

qM(x) = q̃M(x) + ϵη(x), with η(x) ≥ 0. (27)
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We will focus on marginal improvements, that is, a small increase of ϵ from a starting value

of 0.16 This specification allows us to consider a wide range of possible improvements, pa-

rameterized by the function η. For some results, we will focus on two special cases:

Core improvement : η(x) > 0 ⇔ x < x∗∗
H , (28)

Frontier improvement : η(x) > 0 ⇔ x∗∗
H < x < x∗∗

L . (29)

A machine improvement is “core” if it only affects tasks that both H and L financiers are

already allocating to the machine. In reality, this may be the case of improvements in

standard datasets, in computing power (e.g., cloud services), in statistical methodologies

(e.g., adoption of machine learning). In contrast, a machine improvement is “frontier” if it

affects tasks that some financiers, but not all, are allocating to the machine. Improvements

in general purpose AI may belong to that category.17

It is immediate that an improvement in the machine (weakly) leads to some tasks being

reallocated from the worker to the machine. Moreover, using (17), we have:

∂x̃n

∂ϵ
|ϵ=0 =

η(x̃n)

|q′M(x̃n)|
≥ 0. (30)

Note in particular that the impact may be stronger for H financiers or for L financiers.

Moreover, in the special cases of a “core” or “frontier” improvement, there is no impact on

task allocation, as η(x̃n) = 0.

We can use (16) and the envelope theorem to study how machine improvement affects

the returns that different financiers can offer to investors:

∂r̃n
∂ϵ

|ϵ=0 =

(
R− c

qn

)∫ x̃n

0

η(x)f(x)dx, (31)

∂r̃M
∂ϵ

|ϵ=0 = R

∫ 1

0

η(x)f(x)dx. (32)

16Note that this implies that q̃M satisfies the same same properties as qM .
17More generally, we will see below that the impact of machine improvement can depend on the distribution

of this improvement across tasks. This distribution can be measured empirically. In particular, Hampole
et al. (2025) measure the dispersion of AI exposure of tasks within an occupation. In our model, a higher
dispersion would mean that η(x) is more flat over [0, 1].
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We deduce from these expressions the following Lemma:

Lemma 2. The relative impacts of machine improvement on returns are as follows:

∂r̃M
∂ϵ

|ϵ=0 > max

(
∂r̃H
∂ϵ

|ϵ=0,
∂r̃L
∂ϵ

|ϵ=0

)
≥ 0, (33)

∂r̃H
∂ϵ

|ϵ=0 >
∂r̃L
∂ϵ

|ϵ=0 ⇔
(

c

qL
− c

qH

)∫ x̃H

0

η(x)f(x)dx >

(
R− c

qL

)∫ x̃L

x̃H

η(x)f(x)dx.(34)

In particular, (34) is true in the case of a core improvement, and false for a frontier im-

provement.

Condition (34) decomposes the relative impact of machine improvement on r̃H and r̃L

into two effects. On the left-hand side, we have the machine improvement on core tasks.

Such improvement increases success probability in the same way for both type H and type

L financiers. However, type L financiers are more exposed to the worker’s moral hazard

and their investors capture less of the surplus, so that improvements on core tasks benefit

the type H financiers more. On the right-hand side, we have the machine improvement on

frontier tasks. As type H financiers do not use the machine for such tasks, such improvement

only benefits type L financiers. Finally, the impact of machine improvement on the return

that can be offered by only using the machine is always the highest: all tasks are allocated

to the machine so the improvement benefits all tasks, and there is no moral hazard since the

worker is not used, so none of the surplus is dissipated into rents.

An implication of the first part of Lemma 2 is that a small increase in ϵ can lead either

type L or type H financiers to switch from a solution with worker involvement to a solution

without, but not the opposite. Formally, differentiating (23) shows that ĉL and ĉH are both

decreasing in ϵ. In what follows, we first study the consequences of machine improvement

when both types of financiers use the worker. We then briefly discuss the other cases,

including when the improvement leads one type to switch to a solution with the machine

only.
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5.1 Both types of financiers use the worker: c < ĉL

We first study the case c < ĉL, in which both types of financiers use the worker in parallel with

the machine and offer returns gross of management costs r∗∗H = r̃H and r∗∗L = r̃L, respectively.

We assume that c is sufficiently far from ĉL and K from K∗∗
0 and K∗∗

1 so that machine

improvement does not change the type of equilibrium. The impact of machine improvement

on returns then has the following implication:

Proposition 4. When c < ĉL, an infinitesimal increase in ϵ from ϵ = 0 affects capital

allocation as follows: (i) If K < K∗∗
0 , k∗∗

H = K/NH and k∗∗
L = 0 are unaffected; (ii) If

K ∈ (K∗∗
0 , K∗∗

1 ), if (34) holds then k∗∗
H increases and k∗∗

L decreases, otherwise the opposite

obtains; (iii) If K > K∗∗
1 , both k∗∗

H and k∗∗
L increase.

Cases (i) and (iii) are straightforward: when K < K∗∗
0 all capital is allocated to type

H financiers already, so that machine improvement does not change the allocation. When

K > K∗∗
1 some capital is allocated to the risk-free asset. When the machine improves, both

types of financiers can offer higher gross returns and hence capital flows from the risk-free

asset to the financiers.

Case (ii) is more subtle: capital is only allocated to both types of financiers, and machine

improvement leads to a reallocation between them. Both types of financiers can offer a

higher gross return after the machine improves, so capital flows from the financiers with the

lower increase in returns to the financiers with the higher increase. Which type of financier

benefits more is then given by Lemma 2. In particular, type H financiers can surprisingly

attract more capital, for instance in the case of a core improvement, even though they use the

machine less than type L financiers. This is because moral hazard is less severe for type H

financiers, so that less of the machine improvement goes to rents for the worker. Conversely,

for a frontier improvement, capital flows from type H to type L financiers.

We can now study how the machine improvement affects the total labor in equilibrium

L∗∗. Using (26), we have:

23



∂L∗∗

∂ϵ
|ϵ=0 = −∂x∗∗

H

∂ϵ
|ϵ=0f(x

∗∗
H )NHk

∗∗
H − ∂x∗∗

L

∂ϵ
|ϵ=0f(x

∗∗
L )NLk

∗∗
L

+
∂k∗∗

H

∂ϵ
|ϵ=0NH [1− F (x∗∗

H )] +
∂k∗∗

L

∂ϵ
|ϵ=0NL[1− F (x∗∗

L )]. (35)

The first line is necessarily negative due to (30): as the machine improves, necessarily each

financier uses the machine more and fewer tasks are allocated to the worker. However, it

cannot be the case that both types of financiers lose capital, so the sign of the second line is

ambiguous. There are several cases in which we can sign the total impact on labor:

Corollary 4. When c < ĉL, an infinitesimal increase in ϵ from ϵ = 0 has a negative impact

on total labor L∗∗ if K < K∗∗
0 or if K ∈ (K∗∗

0 , K∗∗
1 ) and (34) is false. Moreover:

Following a core improvement, L∗∗ decreases if K < K∗∗
0 and increases otherwise.

Following a frontier improvement, L∗∗ decreases if K < K∗∗
1 and increases otherwise.

In particular, this corollary shows that machine improvement can surprisingly lead to a

total increase in labor, despite the machine and the worker being substitutes. This happens

when the negative effect due to the reallocation of tasks is dominated by the allocation of

more capital to financiers. When K > K∗∗
1 , investors reallocate capital from the risk-free

asset to both types of financiers. If the reallocation of tasks is limited (it is null in the case of

core or frontier improvements), then total labor increases. When K ∈ (K∗∗
0 , K∗∗

1 ) and (34) is

true, capital is reallocated from the less labor-intensive type L financiers to the more labor-

intensive type H. Again, with little reallocation of tasks, total labor increases. If instead

(34) is false, then all effects go towards less labor.

We can go further and analyze whether machine improvement benefits workers. Using

(14), we derive the equilibrium utility of the worker associated with financier n as:

U∗∗
n = Un(a

∗∗
n , h∗∗

n , w∗∗
n , e∗∗n ) = ce∗∗n

F (x∗∗
n )QM(x∗∗

n )

qn
. (36)

We then define the total workers’ rents in equilibrium as:

U∗∗ = NHk
∗∗
H U∗∗

H +NLk
∗∗
L U∗∗

L , (37)
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so that the impact of machine improvement on rents is:

∂U∗∗

∂ϵ
|ϵ=0 = NH

ce∗∗H k∗∗
H

qH
F (x∗∗

H )

∫ x∗∗
H

0

η(x)f(x)dx+NHce
∗∗
H k∗∗

H f(x∗∗
H )

∂x∗∗
H

∂ϵ
|ϵ=0

+ NL
ce∗∗L k∗∗

L

qL
F (x∗∗

L )

∫ x∗∗
L

0

η(x)f(x)dx+NLce
∗∗
L k∗∗

L f(x∗∗
L )

∂x∗∗
L

∂ϵ
|ϵ=0

+ NH
ce∗∗H
qH

∂k∗∗
H

∂ϵ
|ϵ=0F (x∗∗

H )QM(x∗∗
H ) +NL

ce∗∗L
qL

∂k∗∗
L

∂ϵ
|ϵ=0F (x∗∗

L )QM(x∗∗
L ). (38)

The first and second lines are the impact of machine improvement on workers’ rents for a given

capital allocation, and they consist only of positive terms. Machine improvement increases

the probability of success, so that the worker is more likely to receive payment. This “free-

riding effect” is the main difference between a moral hazard model and a competitive model:

effort is not paid at the worker’s marginal productivity. Instead, the worker is rewarded for

success, even if the success mostly comes from the machine. This explains that rents can

surprisingly increase when the machine improves.

The third line is a capital reallocation effect. It is clear from (36) that rents per unit of

capital are higher for type L workers than for type H. This is because the effort of type H

workers has a bigger impact on success probability, and hence success is a stronger signal

that effort was provided. As a result, if both types of financiers attract more capital, or if

capital is reallocated from type H to type L, then machine improvement also increases rents

via the capital reallocation effect. If instead capital is reallocated from type L to type H

financiers, then the capital reallocation effect reduces rents and the total impact of machine

improvement is ambiguous. The next corollary summarizes these results:

Corollary 5. When c < ĉL, an infinitesimal increase in ϵ from ϵ = 0 has a positive impact

on total workers’ rents U∗∗, unless K ∈ (K∗∗
0 , K∗∗

1 ) and (34) holds, in which case the impact

has the sign of (38), which is ambiguous.

We can finally study the impact of machine improvement on total welfare, which we

denote W ∗∗. Total welfare is the sum of gains for investors and workers’ rents,18 which

writes:

W ∗∗ = NHk
∗∗
H (α∗∗

H + U∗∗
H ) +NLk

∗∗
L (α∗∗

L + U∗∗
L ). (39)

18Financiers are competitive and always earn zero surplus in the model.
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Similarly to what we did for workers’ rents, we can decompose the impact of machine im-

provement on welfare into an efficiency gain effect and a capital reallocation effect:

∂W ∗∗

∂ϵ
|ϵ=0 = NHk

∗∗
H

∂[α∗∗
H + U∗∗

H ]

∂ϵ
|ϵ=0 +NLk

∗∗
L

∂[α∗∗
L + U∗∗

L ]

∂ϵ
|ϵ=0

+ NH
∂k∗∗

H

∂ϵ
|ϵ=0[α

∗∗
H + U∗∗

H ] +NL
∂k∗∗

L

∂ϵ
|ϵ=0[α

∗∗
L + U∗∗

L ]. (40)

On the first line we have the impact of machine improvement via a higher efficiency for a

given capital allocation. We already know that U∗∗
n increases after the machine improves,

and it is easy to see that α∗∗
n does too, so this impact is always positive.

On the second line we have a capital reallocation effect. Remember that if k∗∗
H and k∗∗

L

are both positive then α∗∗
H = α∗∗

L . As U∗∗
H < U∗∗

L , this implies that α∗∗
H + U∗∗

H < α∗∗
L + U∗∗

L : if

both are active, a type H financier offers the same return as a type L financier, but creates

less total surplus. Hence, when capital flows from type H to type L financiers the capital

reallocation effect increases welfare, but otherwise it decreases welfare. We thus obtain a

corollary similar to Corollary 5:

Corollary 6. When c < ĉL, an infinitesimal increase in ϵ from ϵ = 0 has a positive impact

on total welfare W ∗∗, unless K ∈ (K∗∗
0 , K∗∗

1 ) and (34) holds, in which case the impact has

the sign of (40), which is ambiguous.

5.2 Other cases

We now briefly consider the cases where c ≥ ĉL, so that type L financiers no longer use the

worker.

The case c > ĉH is straightforward: both types of financiers use the machine only, and

offer the same return to investors. When the machine improves, this return increases, and all

financiers weakly attract more capital. Workers are never used, hence their total labor and

their rents are unaffected. Total welfare weakly increases when the machine improves, but

the effect is null if K > K1(r̃M , r̃M), as the productivity increase is compensated by higher

costs χ(kn).

The case c ∈ (ĉL, ĉH) is qualitatively similar to the case c < ĉL when only type H
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financiers are active, or when investors allocate capital to the risk-free asset. The only

case that is slightly different is when both financiers are active and share K, that is, K ∈

(K0(r̃M , r∗∗H ), K1(r̃M , r∗∗H )). Indeed, we know from Lemma 2 that machine improvement in-

creases r̃M more than r∗∗H . Thus, a reasoning similar to the one of Proposition 4 implies that

k∗∗
H decreases and k∗∗

L increases. The capital reallocation effect then implies that total labor

L∗∗ decreases. Contrary to the case c < ĉL, rents are now higher in type H financiers than

in type L financiers (where they are null). Hence, the impact on workers’ rents and on total

welfare is ambiguous.

Finally, we can consider what happens if c is just below ĉn, so that machine improvement

leads type n financiers to stop using the worker, for n ∈ {L,H}. Importantly, as the threshold

is crossed, r∗∗n changes from r̃n to r̃M , but there is no discontinuity. As a result, k∗∗
n and

α∗∗
n move continuously too. In contrast, the labor of type n workers and their rents jump

discontinuously downwards. We deduce the following:

Corollary 7. For n ∈ {L,H}, consider a machine improvement from ϵ = 0 to ϵ = dϵ, such

that c < ĉn before improvement and c > ĉn after. Then, for dϵ small enough, improving the

machine discontinuously decreases total labor L∗∗, rents U∗∗, and welfare W ∗∗.

This corollary reflects the fact that the switch to no longer using the worker depends

on a maximization program that aims at maximizing returns for investors, but neglects the

worker’s rents. At ĉn, an infinitesimal increase in returns is obtained at the cost of a discrete

decrease in rents for the worker. This implies that machine improvement leads to a drop in

total welfare.

5.3 Discussion

Machine improvement affects workers’ rents and total welfare via multiple effects, the direc-

tions of which depend on the type of improvement and on the sign of the capital reallocation

effect. Table 1 summarizes all the possibilities studied in this section. Moreover, Figure 3

shows in a numerical example the regions in the (K, c) space where k∗∗
H − k∗∗

L , L∗∗, U∗∗, and

W ∗∗ are affected positively or negatively.

[Insert Table 1 and Figure 3 here.]
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We briefly summarize and discuss the results that are specific to our setup with moral

hazard, and would typically not obtain in a traditional competitive setup.

First, machine improvement can sometimes lead to a higher demand for labor, despite

labor and machines being perfect substitutes. Note that, for a given capital allocation, each

financier uses the worker on fewer tasks when the machine improves, which is due to the

substitutability. However, there is an additional capital allocation effect. When capital is

abundant, all financiers receive more capital as the machine improves, and this increases the

total demand for labor. More surprisingly, when capital is less abundant and all capital is

allocated to type H and type L financiers, machine improvement can benefit the type H

more than the type L financiers, despite type H financiers using the machine less. This is

due to the presence of moral hazard: type L financiers use the machine more but also need

to leave a higher proportion of the surplus as rents to the workers. Then, capital can flow

from type L financiers to the type H financiers, which increases the total demand for labor.

Second, machine improvement can actually increase the total utility (rents) of workers,

and this even when the demand for labor decreases. The reason is that moral hazard implies

that workers have to be paid conditionally on success. When the machine improves, success

is more likely, independently of whether the worker exerts effort. Thus, the worker is paid

not only for his own marginal productivity, but also for the productivity of the machine.

This is no longer true when the machine becomes so productive that the financier no longer

uses the worker, in which case rents fall to zero.

This last effect implies that a machine improvement, which expands the technical possi-

bilities of the economy, can actually decrease welfare. Moral hazard creates rents for workers,

but competition between financiers is based on returns offered to investors, net of the worker’s

compensation. An improvement in the machine can lead financiers to completely stop using

the worker, which reduces welfare. Under complete information, it is instead never optimal

to stop using the worker.

Finally, the type of machine improvement matters. It is natural to interpret the develop-

ment of general-purpose AI as a “frontier improvement”, as it affects tasks that are currently

done by workers at least in some firms. An interesting prediction from the model is that

such an improvement will benefit more the financiers that are already more machine-oriented
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(the L types), so that they will attract more capital. However, these financiers are also those

whose workers earn the largest rents. The result of reallocating capital from more worker-

oriented to more machine-oriented financiers is then that total labor decreases, but the rents

of the remaining workers increase, and total rents increase as well. The prediction here is

thus one of fewer jobs in the financial sector, but larger rents for each job.

6 Robustness to Extensions

In this section we consider two variations of the model: (i) the worker and the machine are

complements instead of substitutes; (ii) the worker chooses how much to use the machine,

and this choice is unobservable to the financier.

In both cases we focus on studying whether machine improvement still increases the

worker’s rents in those cases. We abstract away from the capital reallocation effect, which we

already studied in Section 5, and thus set kn = 1. This also allows us to simplify notations

and drop the subscript n.

6.1 Worker and machine are complements

We modify the model by assuming that the worker and the machine are perfect complements

instead of perfect substitutes. Formally, we replace (1) with:

y(a, h, e) =

∫ 1

0

min{a(x)qM(x), h(x)[(1− γ) + γe]q}f(x)dx. (41)

Notice that we also allow the worker to be productive even without exerting effort: the

worker’s total productivity is still q, and shirking reduces this productivity by a factor γ ≤ 1.

The previous specification (1) was assuming γ = 1. The reason for this assumption will

become clear below.

If the worker exerts effort (e = 1), it is trivial that for any x it is optimal to have:

ã(x)qM(x) = qh̃(x). (42)
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The worker’s incentive compatibility constraint is then:

w

∫ 1

0

qh̃(x)f(x)dx− c

∫ 1

0

h̃(x)f(x)dx ≥ w

∫ 1

0

(1− γ)qh̃(x)f(x)dx (43)

⇔ w ≥ w̃ =
c

γq
. (44)

It is immediate to check that if w ≥ w̃ then the worker’s participation constraint is also

satisfied. The financier chooses h̃ so as to maximize the return rn to investors, which gives:

h̃ = argmax
h(·)

(
R− c

γq

)∫ 1

0

qh(x)f(x)dx− 1 (45)

s.t. ∀x ∈ [0, 1], a(x)qM(x) = qh(x), 0 ≤ a(x), 0 ≤ h(x), a(x) + h(x) ≤ 1.

We obtain that h̃(x) is characterized by ã(x)qM(x) = qh̃(x) and ã(x)+ h̃(x) = 1, which gives:

h̃(x) =
qM(x)

q + qM(x)
(46)

r̃n =

(
R− c

γq

)∫ 1

0

qqM(x)

q + qM(x)
f(x)dx− 1. (47)

An alternative solution for the financier is to offer w = 0, so that the worker does not exert

effort. Denoting this solution with a subscript M , a similar reasoning to the above gives us

that h̃M(x) is characterized by ãM(x)qM(x) = q(1 − γ)h̃M(x) and ãM(x) + h̃M(x) = 1, so

that:

h̃M(x) =
qM(x)

(1− γ)q + qM(x)
(48)

r̃M = R

∫ 1

0

(1− γ)qqM(x)

(1− γ)q + qM(x)
f(x)dx− 1. (49)

The financier chooses a solution with positive effort by the worker if and only if r̃ ≥ r̃M ,

which is equivalent to c ≤ ĉ with:

ĉ = γ2qR

∫ 1

0
qM (x)2

(q+qM (x))((1−γ)q+qM (x))
f(x)dx∫ 1

0
qM (x)

q+qM (x)
f(x)dx

. (50)

Note that necessarily ĉ > 0. From now on, we focus on the case c < ĉ so that the worker
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exerts effort and receives a positive wage. The worker’s rent in that case is:

U∗∗ = w̃

∫ 1

0

qh̃(x)f(x)dx− c

∫ 1

0

h̃(x)f(x)dx

=
1− γ

γ
c

∫ 1

0

qM(x)

q + qM(x)
f(x)dx. (51)

We can finally compute the impact of a marginal improvement in the machine:

∂U∗∗

∂ϵ
|ϵ=0 =

1− γ

γ
c

∫ 1

0

qη(x)

[q + qM(x)]2
η(x)f(x)dx > 0. (52)

Thus, our result that machine improvement increases the worker’s rents is robust to a setting

in which the worker and the machine are complements. This is for two reasons. First, as in the

case with substitutability, when the machine improves the success probability increases, even

if the worker shirks. Second, as would happen also on a competitive market without moral

hazard, the improvement in the machine increases the demand for labor and h̃ increases.

Finally, note that the rents and how much they increase when the machine improves

are scaled by 1−γ
γ
. In particular, if γ = 1 as in the baseline model of Section 2, then

the rents are null. Indeed, in that case, complementarity implies that if the worker shirks,

then the success probability is zero. This logic extends to lower values of γ: in the case of

complementarity, when the share of the worker’s output that is subject to shirking increases,

success becomes more correlated with effort, and the worker’s rents decrease. This suggests

that, for occupations affected by moral hazard, machine improvement may be less favorable to

workers complementary to machines than to workers that are substitutes (but not replaced).

This is in sharp contrast to the competitive case without moral hazard.

6.2 Unobservable use of the machine

We now consider a variant of the setup of Section 2 in which the task allocation is chosen

by the worker rather than by the financier, and the worker’s choice is not observable. This

reflects current concerns in companies that workers may use AI to perform certain tasks
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without the approval of their management.19

The worker’s utility is still given by (14). For a given wage w, the worker will choose a,

h, and e so as to maximize this quantity. This program is similar to the financier’s program,

except that the worker receives w in case of success instead of R. Assuming that the worker

chooses e = 1, the optimal allocation of tasks is to choose ã(x) = 1 if x < x̃ and h̃(x) = 1 if

x ≥ x̃, with:

w̃[qM(x̃)− q] + c = 0. (53)

Inverting this expression, if the financier wants the worker to complete tasks x ≥ x̄, she will

have to offer a wage w̃(x̄) equal to:

w̃(x̄) =
c

q − qM(x̄)
. (54)

Note that it is impossible to incentivize the worker to complete tasks x < x∗∗, as qM(x∗∗) = q

(equation (17)). Implementing the same task allocation as in the case where this allocation

is observable is infinitely costly. Instead, the financier will trade off letting the worker use

the machine too much (relative to x∗∗) against the cost of incentivizing him to complete the

tasks himself.

A second constraint the financier needs to satisfy is that the worker must be better off

exerting effort than not exerting effort and letting the machine complete all the tasks. This

incentive compatibility constraint writes:

w[F (x̄)QM(x̄) + (1− F (x̄))q]− c(1− F (x̄)) ≥ wQM(1). (55)

This condition can be rewritten as:

w

∫ 1

x̄

[q − qM(x)]f(x)dx ≥ c(1− F (x̄)). (56)

19See Yang et al. (2025) for experimental evidence on the “covert” use of generative AI, and the impact of
companies’ disclosure policies on AI use.
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Using (54), if we replace w by w̃(x̄) in this expression we obtain:

∫ 1

x̄

[q − qM(x)]

1− F (x̄)
f(x)dx ≥ q − qM(x̄), (57)

which is true as qM(.) is decreasing. Hence, if the financier chooses w = w̃(x̄) then the worker

necessarily exerts effort. The financier’s problem then reduces to choosing the optimal x̄ to

maximize the return r̃, which we denote:

x̃ = arg max
x̄≥x∗∗

(R− w̃(x̄)) [F (x̄)QM(x̄) + (1− F (x̄))q]. (58)

Solving this program gives us the following result:

Proposition 5. Assume
q′M (x)

f(x)
is increasing, and c < ĉ, where ĉ > 0 is defined in Appendix

A.2.14. Then, the wage optimally offered by the financier is w̃(xu) > 0, with xu ∈ (x∗∗, 1).

The worker completes tasks x > xu and exerts effort, eu = 1.

The assumption that
q′M (x)

f(x)
is increasing is sufficient to ensure the existence of a unique

solution, whereas c < ĉ ensures that the financier asks the worker to exert effort instead

of allocating all tasks to the machine. From now on, we focus on the solution derived in

Proposition 5. We can compute the worker’s rents as:

Uu =
c

q − qM(xu)
[F (xu)QM(xu) + (1− F (xu))qM(xu)]− c[1− F (xu)]. (59)

We want to study whether machine improvement has a positive impact on the worker’s rents.

Denoting ∂Uu

∂ϵ
the derivative of Uu with respect to ϵ but keeping xu constant, we have:

dUu

dϵ
|ϵ=0 =

∂Uu

∂xu

∂xu

∂ϵ
|ϵ=0 +

∂Uu

∂ϵ
|ϵ=0. (60)

We can sign the different terms as follows:

Corollary 8. We have ∂Uu

∂ϵ
|ϵ=0 ≥ 0 and ∂Uu

∂xu ≤ 0. ∂xu

∂ϵ
|ϵ=0 is positive if and only if η′(xu) ≤ η̂,

where η̂ > 0 is defined in the Appendix A.2.15.

The improvement of the machine has several effects on the worker’s rents. The first one
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is ∂Uu

∂ϵ
|ϵ=0 ≥ 0: this is again the free-riding effect, which is thus robust to the task allocation

being unobservable.

However, there is now a second effect. When the machine improves, and unless η′(xu) is

too large, the financier targets a task allocation with more tasks allocated to the machine.

This is intuitive, since the machine is more efficient. However, when machine use is not

observable, the worker’s rents derive from the financier having to incentivize the worker to

exert effort instead of free-riding on the machine. As the financier needs the worker less, his

compensation and rents are lower.

This Corollary implies that, perhaps surprisingly, machine improvement is expected to

increase the worker’s rents less when the worker has full discretion on how to improve the

machine. His rents are higher than if the use of the machine were observable, but they are

less sensitive to machine improvement. Figure 4 gives an example in which this happens.

Intuitively, as the machine improves, the financier wants to use it more, which is exactly what

the worker is tempted to do. Hence, the conflict between the two decreases, and incentive

pay decreases.

[Insert Figure 4 here.]

This result suggests that empirical studies on which occupations are more affected by

machine improvement should not only distinguish occupations according to how much they

are exposed to moral hazard (as the comparison between the complete information benchmark

and the model with moral hazard suggests), but also according to whether the deployment

of the machine is controlled, or at least observed, by the management.

7 Conclusion

A striking feature of recent advances in automation is that they are affecting well-paid knowl-

edge workers, whereas previous waves of automation typically affected manual workers (Ko-

gan et al., 2023). Such workers are more likely to receive agency rents. Thus, models designed

to analyze the automation of manual work and relying on competitive labor markets may not

tell the whole story. Indeed, our model shows that workers’ rents can actually increase with
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automation, even in the case of perfect substitutability, through both a free-riding effect and

a capital reallocation effect.

Due to the pervasiveness of agency rents in the financial sector, we argue that understand-

ing the impact of new technologies on the pay of finance workers requires to enrich existing

models of automation with a moral hazard component. Our paper is only a first step, and

there are several interesting avenues for future research. First, our model endogenizes the

allocation of capital, but the availability and types of workers are exogenous. In reality, the

presence of rents in the financial sector may attract too much talent that may be better

allocated elsewhere, a phenomenon that according to our model could be exacerbated by AI.

Second, our model is static. If a large share of occupations currently impacted by AI are

characterized by agency rents, including such rents in a dynamic model may be important to

understand the long-term impact of AI on economic growth and innovation (Acemoglu and

Restrepo (2018b), Gans (2025)) and income distribution (Bond and Kremens, 2024).
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Alonso, R. and Câmara, O. (2024). Organizing data analytics. Management Science, 70 (5),
3123–3143. 8

Athey, S. C., Bryan, K. A. andGans, J. S. (2020). The allocation of decision authority to human
and artificial intelligence. In AEA Papers and Proceedings, American Economic Association 2014
Broadway, Suite 305, Nashville, TN 37203, vol. 110, pp. 80–84. 8

Autor, D. H. (2015). Why are there still so many jobs? the history and future of workplace
automation. Journal of Economic Perspectives, 29 (3), 3–30. 6

Axelson, U. and Bond, P. (2015). Wall street occupations. The Journal of Finance, 70 (5),
1949–1996. 5

Babina, T., Fedyk, A., He, A. and Hodson, J. (2024). Artificial intelligence, firm growth, and
product innovation. Journal of Financial Economics, 151, 103745. 6

Bertomeu, J., Lin, Y., Liu, Y. and Ni, Z. (2025). The impact of generative ai on information
processing: Evidence from the ban of chatgpt in italy. Journal of Accounting and Economics, p.
101782. 7

Biais, B. and Landier, A. (2020). Endogenous agency problems and the dynamics of rents. The
Review of Economic Studies, 87 (6), 2542–2567. 5

36



Bick, A., Blandin, A. and Deming, D. (2024). The Rapid Adoption of Generative AI. Working
paper. 1

Bloom, N., Brynjolfsson, E., Foster, L., Jarmin, R., Patnaik, M., Saporta-Eksten,
I. and Van Reenen, J. (2019). What drives differences in management practices? American
Economic Review, 109 (5), 1648–83. 3

Bond, P. and Glode, V. (2014). The labor market for bankers and regulators. The Review of
Financial Studies, 27 (9), 2539–2579. 6, 9

— andKremens, L. (2024). Income and Inequality under Asymptotically Full Automation. Working
paper. 35

Bonelli, M. (2025). Data-driven Investors. Working paper. 1

— and Foucault, T. (2025). Does Big Data Devalue Traditional Expertise? Evidence from Active
Funds. Working paper. 7
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Appendix

A.1 Figures and Tables

Unless mentioned otherwise, the figures use the following parameters, meant for illustration

only: R = 3, qL = 0.5, qH = 0.75, NH = 1, NL = 1, f(x) = 1, qM(x) = 0.5
(

1√
x
− 1
)
,

χ(k) = 0.5k, η(x) = qM(x).

Figure 1: Equilibrium in the complete information benchmark

This figure plots which type of equilibrium obtains under complete information, in the (K, c) space: (i) all

capital is allocated to type H financiers (blue); (ii) all capital is allocated to type H and type L financiers

(yellow); (iii) capital is allocated to type H and type L financiers, and to the risk-free asset (green). The

solid black lines correspond to K0(r
∗∗
L , r∗∗H ) and K1(r

∗∗
L , r∗∗H ).
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Figure 2: Equilibrium under moral hazard

This figure plots which type of equilibrium obtains under moral hazard, in the (K, c) space. The solid black

lines correspond to ĉL, ĉH , K∗∗
0 and K∗∗

1 . Capital is allocated only to type H financiers in blue regions, to

only to both types of financiers in orange regions, and to both types of financiers and the risk-free asset in

green regions. For c < ĉL both types of financiers use the worker, for c ∈ (ĉL, ĉL) only type H financiers do,

and for c > ĉL both types of financiers use the machine only.
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Table 1: Impact of machine improvement on capital allocation, labor, rents, and
welfare

This table summarizes the signs of the impact of a marginal improvement in machine performance on capital

allocation k∗∗H and k∗∗L , total labor L∗∗, worker rents U∗∗, and total welfare W ∗∗, for different regions of the

parameters c and K. The corresponding results were shown in Proposition 4, Corollaries 4 to 7, and Section

5.2. c ≃ ĉH and c ≃ ĉL denote cases in which c is just below the threshold, so that machine improvement

makes the corresponding type of financier stop using the worker. A +/− entry means that the sign is

ambiguous, and depends on a condition identified in the proof of the associated proposition or corollary.

k∗∗
H k∗∗

L L∗∗ U∗∗ W ∗∗

c > ĉH

K < K∗∗
1 0 0 0 0 +

K > K∗∗
1 + + 0 0 +

c ≃ ĉH

Any K 0 0 − − −

ĉL < c < ĉH

K < K∗∗
0 0 0 − + +

K∗∗
0 < K < K∗∗

1 − + − +/− +/−
K > K∗∗

1 + + +/− + +

c ≃ ĉL

K < K∗∗
0 0 0 0 0 0

K > K∗∗
0 0 0 − − −

c < ĉL

K < K∗∗
0 0 0 − + +

K∗∗
0 < K < K∗∗

1 and (34) + − +/− +/− +/−
K∗∗

0 < K < K∗∗
1 and ¬ (34) − + − + +

K > K∗∗
1 + + +/− + +
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Figure 3: Impact of machine improvement

The four panels below illustrate the impact of machine improvement on capital reallocation, labor, workers’

rents, and total welfare. We consider an improvement that increases qM (x) by 10% for every x. For each

variable, we plot in red the region where the variable is affected negatively, in green the region where it is

affected positively, and in white the region where it is unaffected. The solid black lines correspond to ĉL, ĉH ,

K∗∗
0 and K∗∗

1 , before machine improvement.
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H − k∗∗

L Panel B: Labor L∗∗

0 1 2 3 4 5

cH

cL

0

1.4

cH

cL

0

1.4

K

c

0 1 2 3 4 5

cH

cL

0

1.4

cH

cL

0

1.4

K

c

0 1 2 3 4 5

cH

cL

0

1.4

cH

cL

0

1.4

K

c

0 1 2 3 4 5

cH

cL

0

1.4

cH

cL

0

1.4

K

c

Panel C: Workers’ rents U∗∗ Panel D: Total welfare W ∗∗

0 1 2 3 4 5

cH

cL

0

1.4

cH

cL

0

1.4

K

c

0 1 2 3 4 5

cH

cL

0

1.4

cH

cL

0

1.4

K

c

0 1 2 3 4 5

cH

cL

0

1.4

cH

cL

0

1.4

K

c

0 1 2 3 4 5

cH

cL

0

1.4

cH

cL

0

1.4

K

c

43



Figure 4: Impact of machine improvement when machine use is not observable

The figure shows the impact of improving the machine when machine use is not observable. Panel A plots the

task allocation threshold xu
H (for q = qH) and xu

L (for q = qL), and compares them to the thresholds x∗∗
H and

x∗∗
L in the baseline model. Panel B plots the workers’ rents Uu both for q = qH and q = qL, and compares

them to U∗∗
H and U∗∗

L in the baseline model. The parameters are the same as in the previous figures, except

that η(x) = 0.5/[1 + exp(20(x− 0.5))]. K is set to 1 and c to 0.1.

Panel A: Task allocation threshold Panel B: Workers’ rents

A.2 Proofs

A.2.1 Proof of Proposition 1

We first consider point (i). If all capital is allocated to type H financiers then k∗
H = K/NH

and α∗
H = r∗H − χ(K/NH). The type L financiers have no capital, k∗

L = 0, and can offer

α∗
L = r∗L. Assumption (3) guarantees that r∗L > 0. Such an equilibrium obtains if and only if

α∗
H > α∗

L, which gives:

K ≤ K0(r
∗
L, r

∗
H) = NHχ

−1(r∗H − r∗L). (A.1)

Point (ii): As all capital is allocated to both type H and type L financiers, we have NHk
∗
H +

NLk
∗
L = K, and (OA1) gives us r∗H − χ(k∗

H) = r∗L − χ(k∗
L). We thus have:

χ

(
K −NLk

∗
L

NH

)
− χ(k∗

L) = r∗H − r∗L. (A.2)

The left-hand side of this equation is decreasing in k∗
L and is negative when all k∗

L = K/NL.

We thus have a solution with a positive k∗
L if and only if the left-hand side is greater than

r∗H−r∗L when k∗
L = 0, which gives χ(K/NH) ≥ r∗H−r∗L, which is equivalent toK ≥ K0(r

∗
L, r

∗
H).
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We then need to have α∗
L = r∗L − χ(k∗

L) > 0. For K = K0(r
∗
L, r

∗
H) we have α∗

L = r∗L and

hence this is true. As K increases, k∗
L increases (using (A.2)) and α∗

L decreases. As K goes

to infinity, so does k∗
L, so that necessarily α∗

L is negative for K large enough. This implies

that there exists a unique K1 > K0(r
∗
L, r

∗
H) such that α∗

L > 0 if and only if K < K1. This

threshold value is such that (A.2) holds and r∗L = χ(k∗
L), which gives k∗

L = χ−1(r∗L) and:

K1(r
∗
L, r

∗
H) = NHχ

−1(r∗H) +NLχ
−1(r∗L). (A.3)

Point (iii): For this last possibility we need r∗H−χ(k∗
H) = r∗L−χ(k∗

L) = 0, which gives k∗
H =

χ−1(r∗H) and k∗
L = χ−1(r∗L). Thus NHk

∗
H + NLk

∗
L = NHχ

−1(r∗H) + NLχ
−1(r∗L) = K1(r

∗
L, r

∗
L).

This equilibrium obtains if and only if NHk
∗
H +NLk

∗
L ≤ K, which gives K ≥ K1(r

∗
L, r

∗
H).

A.2.2 Proof of Lemma 1

The proof follows directly from isolating c in (22).

A.2.3 Proof of Proposition 2

Lemma 1 gives us that type H financiers offer the return (gross of costs) r∗∗H and type L

financiers offer the return r∗∗L as defined in the proposition. For c < ĉH we have r∗∗H > r∗∗L

and one can use the proof of Proposition 1 in Section A.2.1, simply replacing r∗H and r∗L with

r∗∗H and r∗∗L , α∗
H and α∗

L with α∗∗
H and α∗∗

L , and k∗
H and k∗

L with k∗∗
H and k∗∗

L .

When c ≥ ĉH we have r∗∗L = r∗∗H = r̃M . As all financiers offer the same return to investors,

they must all receive the same amount of capital in equilibrium. Hence, there are only two

possible types of equilibrium:

(i) no capital is allocated to the risk-free asset, so that every financier receives K
NL+NH

.

This requires that for every n we have α∗∗
n = r̃M − χ

(
K

NL+NH

)
> 0, which is equivalent to

K < (NL +NH)χ
−1(r̃M) = K1(r

∗∗
L , r∗∗H ).

(ii) some capital is allocated to the risk-free asset, which requires that α∗∗
n = r̃M−χ (k∗∗

n ) =

0, or equivalently k∗∗
n = χ−1(r̃M). We need to have (NL +NH)k

∗∗
n ≤ K, which is equivalent

to K ≥ K1(r
∗∗
L , r∗∗H ).
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Note that K0(r
∗∗
L , r∗∗H ) = NHχ

−1(r̃M − r̃M) = 0 when c ≥ ĉH , so the set K < K0(r
∗∗
L , r∗∗H )

is empty.

A.2.4 Proof of Corollary 1

The corollary follows direction from the definitions of x∗
n and x̃n in (9) and (17), and from

Lemma 1.

A.2.5 Proof of Proposition 3

When c > ĉH we have r∗∗H − r∗∗L = r̃M − r̃M = 0, whereas r∗H > r∗L. Thus, r
∗∗
H − r∗∗L < r∗H − r∗L

in this region.

When c < ĉL, we can write:

r∗n = max
x̄

R[F (x̄)QM(x̄) + (1− F (x̄))qn]− c(1− F (x̄))− 1, (A.4)

r∗∗n = max
x̄

(
R− c

qn

)
[F (x̄)Qm(x̄) + (1− F (x̄))qn]− 1. (A.5)

Using the envelope theorem, we have:

∂[r∗n − r∗∗n ]

∂qn
= R(1− F (x∗

n))−
(
R− c

qn

)
(1− F (x̃n))−

c

q2n
ỹn (A.6)

= −R(F (x∗
n)− F (x̃n))−

c

q2n
[ỹn − qn(1− F (x̃n))]. (A.7)

Corollary 1 implies that F (x∗
n) − F (x̃n) ≥ 0, and (18) implies that ỹn ≥ qn(1 − F (x̃n)).

Hence, r∗n − r∗∗n decreases in qn, which implies that r∗H − r∗∗H < r∗L − r∗∗L , or equivalently

r∗H − r∗L < r∗∗H − r∗∗L .

Finally, when c ∈ [ĉL, ĉH ], we write:

r∗∗H = max
x̄

(
R− c

qH

)
[F (x̄)Qm(x̄) + (1− F (x̄))qH ]− 1, (A.8)

r∗∗L = RQM(1)− 1, (A.9)

r∗n = max
x̄

R[F (x̄)QM(x̄) + (1− F (x̄))qn]− c(1− F (x̄))− 1. (A.10)
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Denote ∆ = [r∗∗H − r∗∗L ] − [r∗H − r∗L]. ∆ is continuous in c at c = ĉL and c = ĉH : indeed,

ĉn is defined by r∗∗n = r̃M . Hence, we know that ∆ is negative for c = ĉH and positive for

c = ĉL. We only need to show that ∆ decreases in c for c ∈ [ĉL, ĉH ] to complete the proof.

Using (A.8) to (A.10) and the envelope theorem, we have:

∂∆

∂c
= − ỹH

qH
− F (x∗

H) + F (x∗
L) (A.11)

= − 1

qH
(F (x̃H)QM(x̃H) + qH [1− F (x∗

L) + F (x∗
H)− F (x̃H)]) . (A.12)

Corollary 1 implies that F (x∗
H) ≥ F (x̃H), so that ∆ decreases in c, which concludes the proof.

A.2.6 Proof of Corollary 2

We first prove the following Lemma:

Lemma 3. We have K1(r
∗∗
L , r∗∗H ) ≤ K1(r

∗
L, r

∗
H): if some capital is allocated to the risk-free

asset under complete information, then this is also the case under moral hazard.

If c ≤ c̃ we have K0(r
∗∗
L , r∗∗H ) ≥ K0(r

∗
L, r

∗
H): if capital is only allocated to type H financiers

under complete information, then this is also the case under moral hazard.

If c ≥ c̃ we have K0(r
∗∗
L , r∗∗H ) ≤ K0(r

∗
L, r

∗
H): if capital is allocated to both type of financiers

under complete information, then this is also the case under moral hazard.

We first compare K1(r
∗∗
L , r∗∗H ) and K1(r

∗
L, r

∗
H). Consider K = K1(r

∗
L, r

∗
H). Then we have

r∗H − χ(k∗
H) = r∗L − χ(k∗

L) = 0, and hence k∗
H = χ−1(r∗H) and k∗

L = χ−1(r∗L). Moreover, we

have K = NHk
∗
H +NLk

∗
L = NHχ

−1(r∗H) +NLχ
−1(r∗L).

By contradiction, assume that K = K1(r
∗
L, r

∗
H) < K1(r

∗∗
L , r∗∗H ). Then we must have

r∗∗H − χ(k∗∗
H ) = r∗∗L − χ(k∗∗

L ) > 0, and NHk
∗∗
H + NLk

∗∗
L = K. The first property implies that

k∗∗
H < χ−1(r∗∗H ) and k∗∗

L < χ−1(r∗∗L ). Moreover, we have r∗∗H < r∗H and r∗∗L < r∗L and χ−1 is

increasing. Hence, we have k∗∗
H < χ−1(r∗H) = k∗

H and k∗∗
L < χ−1(r∗L) = k∗

L.

To conclude, we obtain that k∗∗
H < k∗

H and k∗∗
L < k∗

L, and yet NHk
∗∗
H +NLk

∗∗
L = NHk

∗
H +

NLk
∗
L = K, a contradiction. This proves that K1(r

∗
L, r

∗
H) ≥ K1(r

∗∗
L , r∗∗H ).
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We then compare K0(r
∗∗
L , r∗∗H ) and K0(r

∗
L, r

∗
H). Consider K = K0(r

∗
L, r

∗
H). We have

k∗
H = K

NH
and r∗H − χ(k∗

H) = r∗L − χ(0) = r∗L.

We have K < K0(r
∗∗
L , r∗∗H ) if and only if at K all capital is allocated to type H financiers

under moral hazard. This is equivalent to r∗∗H−χ(K/NH) ≥ r∗∗L . AsK/NH = χ(k∗
H) = r∗H−r∗L,

this condition is equivalent to r∗∗H − r∗∗L ≥ r∗H − r∗L, which is equivalent to c ≤ c̃ using

Proposition 3. This concludes the proof of Lemma 3.

We now turn to proving Corollary 2. We prove the corollary by distinguishing the follow-

ing four different (and exhaustive) possibilities:

(i) The type L financier receives no capital both under complete information and under

moral hazard. Then we have k∗∗
H = k∗

H = K/NH and k∗∗
L = k∗

L and the result is (weakly)

true, regardless of c.

(ii) The type L financier receives capital under moral hazard, but not under complete

information. Hence we have k∗
H = K/NH and k∗

L = 0, whereas k∗∗
H ≤ K/NH and k∗∗

L ≥ 0, so

that k∗∗
H − k∗∗

L ≤ k∗
H − k∗

L. Moreover this case requires K ≥ K0(r
∗∗
L , r∗∗H ) and K ≤ K0(r

∗
L, r

∗
H),

hence K0(r
∗∗
L , r∗∗H ) ≤ K0(r

∗
L, r

∗
H). Lemma 3 shows that this is true if and only if c ≥ c̃. The

corollary thus holds in this case.

(iii) The type L financier receives capital under complete information, but not under

moral hazard. This is the converse of case (ii): We have k∗∗
H = K/NH and k∗∗

L = 0, whereas

k∗
H ≤ K/NH and k∗

L ≥ 0, so that k∗∗
H − k∗∗

L ≥ k∗
H − k∗

L. Moreover this case requires K ≤

K0(r
∗∗
L , r∗∗H ) and K ≥ K0(r

∗
L, r

∗
H), hence K0(r

∗∗
L , r∗∗H ) ≥ K0(r

∗
L, r

∗
H). Lemma 3 shows that this

is true if and only if c ≤ c̃. The corollary thus holds in this case.

(iv) The type L financier receives capital both under complete information and under

moral hazard. There are three subcases.

(iv-a) There is no allocation to the risk-free asset both under complete information and

under moral hazard. Then we can write:

r∗∗H − r∗∗L = ϕ(k∗∗
H ), (A.13)

r∗H − r∗L = ϕ(k∗
H), (A.14)

with ϕ(k) = χ(k)− χ

(
K −NHk

NL

)
. (A.15)
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We have ϕ′(k) ≥ 0. Thus, k∗∗
H ≥ k∗

H if and only if r∗∗H −r∗∗L ≥ r∗H−r∗L, which using Proposition

3 is true if and only of c ≤ c̃. Moreover, as NHk
∗∗
H +NLk

∗∗
L = NHk

∗
H +NLk

∗
L = K, k∗∗

H ≥ k∗
H

is equivalent to k∗∗
L ≤ k∗

H and hence k∗∗
H − k∗∗

L ≥ k∗
H − k∗

L.

(iv-b) There is no allocation to the risk-free asset under complete information, but there

is under moral hazard. In this case, we have k∗∗
H = χ−1(r∗∗H ), k∗∗

L = χ−1(r∗∗L ), and r∗H and r∗L

satisfy (A.14). Fixing r∗H − r∗L, by (A.14) and (A.15), we have

∂k∗
H

∂K
=

χ′(k∗
L)

NLχ′(k∗
H) +NHχ′(k∗

L)
(A.16)

Notice that

∂

∂K
(k∗

H − k∗
L) =

∂

∂K

((
1 +

NH

NL

)
k∗
H − K

NL

)
=

1

NL

(
(NL +NH)χ

′(k∗
L)

NLχ′(k∗
H) +NHχ′(k∗

L)
− 1

)
. (A.17)

If χ(k) is linear in k, then ∂
∂K

(k∗
H − k∗

L) = 0 and k∗
H − k∗

L is a constant. In particular,

at K = K1(r
∗
H , r

∗
L), we have k∗

H − k∗
L = χ−1(r∗H) − χ−1(r∗L). Thus, by continuity, we have

k∗
H−k∗

L = χ−1(r∗H)−χ−1(r∗L) forK0(r
∗
H , r

∗
L)) ≤ K ≤ K1(r

∗
H , r

∗
L), and we only need to compare

χ−1(r∗∗H )− χ−1(r∗∗L ) with χ−1(r∗H)− χ−1(r∗L), which is reduced to case (iv-c) that we discuss

below.

(iv-c) There is a positive allocation to the risk-free asset both under complete information

and under moral hazard. In this case, we have k∗
H = χ−1(r∗H), k

∗
L = χ−1(r∗L), k

∗∗
H = χ−1(r∗∗H ),

and k∗∗
L = χ−1(r∗∗L ). Thus k∗∗

H −k∗∗
L > k∗

H−k∗
L is equivalent to χ−1(r∗∗H )−χ−1(r∗∗L ) > χ−1(r∗H)−

χ−1(r∗L). By Proposition 3, to prove this corollary, we need to show that χ−1(r∗∗H )−χ−1(r∗∗L ) >

χ−1(r∗H)−χ−1(r∗L) is equivalent to r∗∗H − r∗∗L > r∗H − r∗L, which essentially requires χ−1(·) to be

a distance-preserving mapping (isometry). By the Mazur-Ulam theorem (see Lax (2014) pp.

49, Theorem 12): every bijective isometry between real normed spaces is affine, this result is

true if and only if χ(k) is linear in k, as assumed.

Note that it cannot be the case that there is no allocation to the risk-free asset under

moral hazard, but there is under complete information. This would violate Lemma 3.

49



A.2.7 Proof of Corollary 3

The corollary follows directly from (25), (26), and Corollaries 1 to 2. The conditions of the

corollary isolate a case in which all capital is allocated to the financiers, so that effect (iii)

is null. Moreover, as c ≤ ĉL, moral hazard shifts the allocation towards the type H. Since

x∗∗
H < x∗∗

L , x∗∗
H < x∗

H , and x∗∗
L < x∗

L, this shift increases the demand for labor via effect (ii).

Effect (i) always increases the demand for labor.

A.2.8 Proof of Lemma 2

The proof follows directly from (31) and (32).

A.2.9 Proof of Proposition 4

Case (i) is obvious since k∗∗
H = K/NH and k∗∗

L = 0 in that case. In Case (iii), k∗∗
H and k∗∗

L are

determined by r∗∗H = χ(k∗∗
H ) and r∗∗L = χ(k∗∗

L ), then Lemma 2 implies that k∗∗
H and k∗∗

L both

increase.

In Case (ii), Lemma 2 characterizes when r∗∗H increases more than r∗∗L or when the opposite

obtains. Then, one can follow the exact same proof as in case (iv-a) of the proof of Corollary

2 (Section A.2.6) to show that k∗∗
H increases and k∗∗

L decreases if and only if r∗∗H increases

more than r∗∗L .

A.2.10 Proof of Corollary 4

When K < K0(r
∗∗
L , r∗∗H ), k∗∗

H = K/NH is fixed and hence the second line of (35) is null, while

the first line is necessarily negative. This implies that an increase in ϵ has a negative impact

on L∗∗.

When K ∈ (K0(r
∗∗
L , r∗∗H ), K1(r

∗∗
L , r∗∗H )), k∗∗

H is defined by (A.13) and (A.15). Using the

implicit function theorem, we have:

∂k∗∗
H

∂ϵ
|ϵ=0 = NL

∂r∗∗H
∂ϵ

|ϵ=0 −
∂r∗∗L
∂ϵ

|ϵ=0

NLχ′(k∗∗
H ) +NHχ′(k∗∗

L )
. (A.18)

Moreover, as NLk
∗∗
L +NHk

∗∗
H = K, we have NH

∂k∗∗H
∂ϵ

|ϵ=0 = −NL
∂k∗∗L
∂ϵ

|ϵ=0. We can then rewrite
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(35) as:

∂L∗∗

∂ϵ
|ϵ=0 = −∂x∗∗

H

∂ϵ
|ϵ=0f(x

∗∗
H )NHk

∗∗
H − ∂x∗∗

L

∂ϵ
|ϵ=0f(x

∗∗
L )NLk

∗∗
L

+ NHNL

∂r∗∗H
∂ϵ

|ϵ=0 −
∂r∗∗L
∂ϵ

|ϵ=0

NLχ′(k∗∗
H ) +NHχ′(k∗∗

L )
[F (x∗∗

L )− F (x∗∗
H )]. (A.19)

We necessarily have F (x∗∗
L )−F (x∗∗

H ) ≥ 0, so the sign of the second line depends only on (34).

When (34) is false, both lines are negative and ∂L∗∗

∂ϵ
|ϵ=0 is negative. This is in particular

the case for a frontier improvement. With a core improvement, the first line is null and the

second one positive, so that instead ∂L∗∗

∂ϵ
|ϵ=0 is positive.

Finally, when K > K1(r
∗∗
L , r∗∗H ), k∗∗

n is determined by r∗∗n = χ′(k∗∗
n ), so that:

∂k∗∗
n

∂ϵ
|ϵ = 0 =

∂r∗∗n
∂ϵ

|ϵ = 0

χ′(k∗∗
n )

. (A.20)

We can then rewrite (35) as:

∂L∗∗

∂ϵ
|ϵ=0 = −∂x∗∗

H

∂ϵ
|ϵ=0f(x

∗∗
H )NHk

∗∗
H − ∂x∗∗

L

∂ϵ
|ϵ=0f(x

∗∗
L )NLk

∗∗
L

+ NH
∂r∗∗H
∂ϵ

|ϵ=0
1− F (x∗∗

H )

χ′(k∗∗
H )

+NL
∂r∗∗L
∂ϵ

|ϵ=0
1− F (x∗∗

L )

χ′(k∗∗
L )

. (A.21)

The second line is necessarily positive. With a core or a frontier improvement, the first line

is null, so that necessarily ∂L∗∗

∂ϵ
|ϵ=0 is positive.

A.2.11 Proof of Corollary 5

The first two lines of (38) are always positive. If K < K0(r
∗∗
L , r∗∗H ), as k∗∗

H does not change,

the third line is null. If K > K1(r
∗∗
L , r∗∗H ), we have

∂k∗∗H
∂ϵ

|ϵ=0 ≥ 0 and
∂k∗∗L
∂ϵ

|ϵ=0 ≥ 0, so that the

third line is positive too.

IfK ∈ (K0(r
∗∗
L , r∗∗H ), K1(r

∗∗
L , r∗∗H )), we use again thatNHk

∗∗
H = NLk

∗∗
L and henceNH

∂k∗∗H
∂ϵ

|ϵ=0 =

−NL
∂k∗∗L
∂ϵ

|ϵ=0 to rewrite the third line of (38), the capital reallocation effect, as:

cNH
∂k∗∗

H

∂ϵ
|ϵ=0

(
F (x∗∗

H )QM(x∗∗
H )

qH
− F (x∗∗

L )QM(x∗∗
L )

qL

)
(A.22)
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We have F (x∗∗
H )QM(x∗∗

H ) < F (x∗∗
L )QM(x∗∗

L ) and qH > qL, hence the term in brackets is

negative. We know from Proposition 4 that
∂k∗∗H
∂ϵ

|ϵ=0 ≥ 0 if and only if (34) holds, which

concludes the proof.

A.2.12 Proof of Corollary 6

When K < K0(r
∗∗
L , r∗∗H ) we have α∗∗

H = r∗∗H − χ(K/NH). As r∗∗H increases after machine

improvement, so does α∗∗
H . We know from the previous corollary that U∗∗

H also increases, so

the first line of (40) is positive. As k∗∗
H is fixed, the second line is null.

When K > K1(r
∗∗
L , r∗∗H ), α∗∗

H = α∗∗
L = 0. Total welfare is then equal to U∗∗, and we can

simply apply Corollary 5.

When K ∈ (K0(r
∗∗
L , r∗∗H ), K1(r

∗∗
L , r∗∗H ), we can follow the proof of Corollary 5 to write the

second line of (40) as:

cNH
∂k∗∗

H

∂ϵ
|ϵ=0 (α

∗∗
H + U∗∗

H − α∗∗
L − U∗∗

H ) . (A.23)

Noting that α∗∗
H = α∗∗

L and U∗∗
H < U∗∗

L and using Proposition 4 gives us the result.

A.2.13 Proof of Corollary 7

This corollary is proved in the main text.

A.2.14 Proof of Proposition 5

Differentiating (58) with respect to x̄ and rearranging, we obtain that the return increases

in x̄ if and only if φ(x̄) ≥ 0, with:

φ(x) = −c
q′M(x)

f(x)
[F (x)QM(x) + (1− F (x))q]− (R(q − qM(x))− c)(q − qM(x))2. (A.24)

Note that φ(x∗∗) > 0 and as x > x∗∗ we necessarily have q − qM(x) > 0 and F (x)QM(x) +

(1 − F (x))q > 0. Hence, a sufficient condition for φ to be decreasing in x is to have
q′M (x)

f(x)

increasing in x. The proposition assumes this condition to be true. Then, to have an interior

52



solution xu ∈ (x∗∗, 1), we need φ(1) < 0. This gives us:

c ≤ ĉ1 =
f(1)Rq3

f(1)q2 − q′M(1)QM(1)
. (A.25)

Note in particular that ĉ1 > 0. We then need to ensure that solution xu gives a higher profit

than offering a wage of zero and making the worker rely entirely on the machine. This gives

us the following condition:

(
R− c

q−QM (x̃)

)
[F (x̃)QM(x̃) + (1− F (x̃))q] ≥ RQM(1) (A.26)

⇔ c ≤ R(q−qM (x̃))
∫ 1
x̃ (q−qM (x))f(x)dx

F (x̃)QM (x̃)+(1−F (x̃))q
= ĉ2. (A.27)

Note that ĉ2 > 0. Defining ĉ = min(ĉ1, ĉ2), we have ĉ > 0 and for c < ĉ the unique solution

to the financier’s problem is to offer wage w̃(xu) to the worker, so that the worker exerts

effort on all tasks above xu, and uses the machine on all tasks below.

A.2.15 Proof of Corollary 8

We compute the following quantities:

∂Uu

∂ϵ
|ϵ=0 =

c

[q − qM(xu)]2

(
η(xu)[F (xu)QM(xu) + (1− F (xu))q]

+(q − qM(xu))

∫ xu

0

η(x)f(x)dx

)
≥ 0 (A.28)

∂Uu

∂xu
=

cq′M(xu)

[q − qM(xu)]2
(F (xu)QM(xu) + (1− F (xu))q)) ≤ 0. (A.29)

Finally, using the implicit function theorem, ∂xu

∂ϵ
|ϵ=0 is positive if and only if ∂φ(xu)

∂ϵ
|ϵ=0 is

positive. This is equivalent to:

− cη′(xu)
f(xu)

[F (xu)QM(xu) + (1− F (xu)q]− cq′M (xu)

f(xu)

∫ xu

0
η(x)f(x)dx

+ Rη(xu)(q − qM(xu))2 + 2η(xu)(q − qM(xu))[R(q − qM(xu))− c] ≥ 0. (A.30)
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All the terms in this condition are positive except potentially the first one. Denoting η̂ > 0

the value of η′(xu) such that (A.30) holds with an equality, we have that ∂xu

∂ϵ
|ϵ=0 ≥ 0 if and

only if η′(xu) < η̂.
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