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Abstract

A defining feature of startup financing is its staged structure: in each funding round, venture
capital (VC) investors have the option to continue financing or to abandon a startup. By exercising
the financing option, VC investors retain the option to eventually take the startup public, typically
on the Nasdaq. We model startups as compound options on underlying firms that, upon successful
exit, list on the Nasdaq. Our startup valuation model closely matches the IPO time series of startups,
delivers closed-form expressions for startup betas over the lifecycle of these ventures, and yields a key
insight: a portfolio of startups resembles a leveraged position in the Nasdagq. This replication strategy,
implementable at low cost, tracks the performance of VC fund vintages with striking accuracy. Over
the past two decades, VC has significantly underperformed this benchmark.
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1 Introduction

Large institutional investors, such as university endowments, allocate a substantial and growing share
of their portfolios to venture capital (VC). VC offers the potential to fund the next unicorn that eventually
lists on a public exchange, generating outsized returns for founders and investors. At the same time,
most startups fail, resulting in a total loss of capital. To manage this downside risk, VC funds provide
financing to startups in stages. This staged financing structure provides VC investors with the option to
continue funding promising startups and discontinue those that underperformE] While the option-like
nature and the skewed payoff of VC investments are often recognized, their implications for the risks
and returns of VC investments remain imperfectly understood.

This paper develops a tractable compound-option framework (Geske, [1979) for valuing startup
firms. Our model captures the staged nature of VC financing, reproduces the empirical pattern of a
few blockbuster IPOs and mergers alongside many liquidations, and endogenously links exit payoffs to
aggregate market conditions. Despite its simplicity, the framework closely matches two broad stylized
facts: the time-series trajectory of VC-backed IPOs over the past thirty years and the return profiles of
successive VC fund vintages. Remarkably, despite the optionality embedded within individual star-
tups, a diversified portfolio of these staged-financing option claims behaves indistinguishably from a
low-turnover leveraged position in the stock market index that drives their underlying systematic risk.

Building on prior studies of selection bias in deal-level returns (Cochrane, |2005; Korteweg and
Sorensen, 2010) and the value of staging optionality (Berk, Green, and Naik, 2004), our framework pro-
vides clear, quantitative answers to several central questions facing both academics and practitioners.
In particular, we demonstrate how high idiosyncratic risk coexists with significant sensitivity to market
swings once firms successfully list; how the implicit leverage embedded in successive financing rounds
shapes a startup’s evolving market beta; the degree of convexity inherent in returns to well-diversified
VC investors; which systematic risk factors best summarize the VC payoff distribution; and, finally,
how investors can construct and implement a low-cost replication strategy—and hence a natural bench-
mark—for evaluating VC performance.

We model individual startup firms as compound call options. We treat each funding round as an
embedded real option. At the first decision point, the startup invests only if the expected value of its
remaining options exceeds the cost; otherwise it is discontinued/liquidated. If it proceeds, a second

option grants the choice between a final growth investment (pursuing an IPO) or an exit via acquisition,

ISee (Gompers, (1995; |Lerner), [1994; Cumming and MacIntosh) [2003) for discussions and evidence of the role of staging in
venture capital; and (see [Raiffa and Schlaifer, 1961) for foundational treatments of staging and abandonment via decision
trees.



with payoffs priced by Geske’s compound-option formula early on (before the first decision point) and
by Black-Scholes once only a single call remains (after the first decision point).

To analyze the systematic risks of VC, we integrate a CAPM-style market factor into our option
framework. We drive firm asset values with both idiosyncratic shocks and a market factor, so that exit
payoffs naturally depend on realized aggregate returns An important implication of this framework
is that a startup can be viewed as a levered claim on its underlying asset value, with leverage naturally
arising from the staged funding structure. If the underlying asset value is exposed to systematic risk, this
exposure is amplified through the leverage inherent in staged funding, magnifying the systematic risk
in startups. When startups are pooled into diversified funds, that amplified systematic risk is prevalent
at both the fund and allocator-portfolio levels as idiosyncratic risk is diversified away.

To bring our model to the data, we establish several empirical facts. Using comprehensive deal-
level data spanning four decades, we document several empirical patterns in funding activity. First,
exit outcomes are highly skewed: 65% of startups are liquidated, 27% are acquired, and 8% go public
via IPO. Second, among IPOs, we find that 80% of VC-backed firms list on the Nasdaq exchange, con-
firming the high-growth, tech-orientation of VC-backed firms and motivating a Nasdaqg-based market
factor (see [Ritter| (1991) for early evidence on IPO listings). Third, because an IPO represents the final
stage, turning a private startup into a publicly traded security, it reveals the risk characteristics of the
firm’s underlying asset. Conditional on IPO, we observe an average volatility of 90% and a Nasdaqg-100
beta of 1.4—evidence of substantial systematic risk exposure in the very asset our option-pricing model
treats as the underlying. Finally, quarterly IPO volumes track Nasdaq-100 returns far more closely than
S&P 500 returns, confirming that both exit timing and payoffs are strongly procyclical with tech-sector
performance. These empirical regularities validate our use of the realized market return as the state
variable in the option-pricing framework and guide the calibration of idiosyncratic volatility and beta
parameters.

These empirical findings directly inform our model. They imply that the appropriate underlying
asset—should have high idiosyncratic volatility around 90% and a beta of 1.4 with respect to the Nasdag-
100. We set just two calibration targets—the unconditional probabilities of startup liquidation (65%)
and IPO (8%)—and fix all model parameters thereafter. We then ask the model to deliver two out-of-
sample predictions over a thirty-year time series: (i) the quarterly pattern of VC-backed IPOs, and (ii)
the vintage-level return profile of institutional portfolios. Remarkably, without any return-based fitting,

the constant-parameter model explains 39% of the variation in IPO frequencies and 92% of the return

2The key idea is to use the realized market return as the relevant state space for asset pricing, consistent with the [Sharpe; (1964)
and |Lintner| (1965) CAPM. This follows (Coval, Jurek, and Stafford, 2009) who integrate the CAPM into the Merton| (1974)
credit model to study the pricing of bond portfolios and CDO tranches.
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variation of VC fund vintages—demonstrating that matching only unconditional exit rates suffices to
capture rich conditional dynamics.

The model implies stock-market betas of 2.2, 1.6, and 1.4 for early-, late-, and mezzanine-stage
startups, respectively. Consistent with the findings of Berk, Green, and Naik| (2004), systematic risk
declines as startups progress through funding rounds and implicit leverage decreases. We then com-
pare the stage-level model payoffs of a portfolio of startups with the payoff of a leveraged position in
the Nasdaq-100 with the same stage-level beta. We find that the two payoffs are nearly identical with
plausible parameter sets. Key to this finding is that the idiosyncratic risk of startups is high, a feature
emphasized in prior deal-level studies (Cochrane, 2005; Korteweg and Sorensen, [2010). In other words,
the option-like payoff structure that exists at the individual startup level vanishes once we construct a
diversified portfolio of startups. This implies a powerful result: once the stage-level VC beta is identi-
tied, VC portfolio returns can be replicated using a low-turnover leveraged position in the Nasdaqg-100
index.

The model suggests that an appropriate public market benchmark (Kaplan and Schoar, 2005) for
evaluating VC investments is a leveraged position in the Nasdagq-100. We implement a vintage-level
replication strategy that mirrors actual VC limited-partner cash flows—both contributions and distribu-
tions—using a levered Nasdaq-100 portfolio. The initial portfolio leverage is calibrated to early-stage
startup betas and then gradually decreases as the portfolio companies mature. This strategy, which can
be implemented at low cost using Nasdag-100 futures, replicates the performance of VC vintages well,
explaining 90% of the variation in VC vintage returns—which is only slightly below the 92% that our
option pricing model explains. Notably, the strategy is able to keep pace with the extremely high VC
returns realized during the tech boom in the late 1990s.

From the perspective of the leveraged Nasdaq benchmark, we uncover a stark performance di-
vergence around the tech boom supported by two key findings. First, pre-2000 VC vintages match or
slightly outperform the levered Nasdaq benchmark, while every vintage since 2000 underperforms the
benchmark. Second, we use the replicating strategy to build a calendar-time market-level VC index
and compare its performance to the Cambridge Associates (CA) VC index. We find that the CA index
underperforms the Nasdaq benchmark over the last two decades.

Against the backdrop of VC underperformance, it is surprising that institutional investors like en-
dowments have increased their allocations to this asset class. One possible consequence of this surge
in capital is that fundraising may have outpaced the availability of high-quality investment opportuni-
ties, potentially resulting in capital being allocated to weaker deals at inflated valuations and leading to

lower subsequent returns (Gompers and Lerner, 2000; Ewens and Rhodes-Kropf, 2015). An alternative



possibility for the underperformance of VC relative to our benchmark is that the riskiness of VC has
declined over the past two decades, as fewer firms go public and more are acquired by “big tech,” but
we find little empirical support for this.

Our results show that investors—even those without direct VC exposure or access—can cheaply
replicate the risk—return profile of a diversified VC portfolio by applying stage-specific betas to leverage
a Nasdag-100 position. More generally, this paper illustrates how a parsimonious structural model—one
that captures only staging optionality and market-beta risk—can deliver practical benchmarks for private-
equity investing.

Related Literature

Option-Based Valuation Our framework builds on the Black-Scholes-Merton tradition for pric-
ing standard options (Black and Scholes, 1973; Merton, 1973} 1974) and Geske’s compound-option for-
mula (Geske, (1979). Subsequent work applied these tools to multi-stage investments (Majd and Pindyck),
1987; Pindyck, 1993; Schwartz and Moon, 2000; Berk, Green, and Naik, 2004), but did not integrate sys-
tematic risk factors directly into the compound-option structure. In contrast, we embed a CAPM-style
market factor to generate joint predictions for exit timing and portfolio returns (Cremers, Driessen, and

Maenhout, [2008; |Coval, Jurek, and Stafford), 2009).

Risk and Return in Venture Capital A large body of empirical literature documents the skewed,
high-variance nature of VC returns (Kaplan and Sensoy, 2015; Korteweg, 2019). Deal-level studies
confront severe selection bias—successful exits are overrepresented—requiring structural corrections
(Cochrane, 2005; Korteweg and Sorensen, 2010ﬁ Fund-level studies face infrequent NAV updates and
fee distortions (Gompers and Lerner, 1997; Phalippou and Gottschalg, 2009; Woodward), 2009; Ewens,
Jones, and Rhodes-Kropf, 2013; Brown, Ghysels, and Gredil, 2023). Our structural model endogenizes
selection through market-driven exit options, aligning our high systematic-risk estimates with both
strands of the literature (Cochrane, 2005; Korteweg and Sorensen, 2010; |/Ang, Chen, Goetzmann, and

Phalippou, 2018; Korteweg and Nagel, 2024).

Lifecycle Betas Empirical evidence on how systematic risk evolves through financing rounds is
mixed: some find rising betas (Korteweg and Sorensen, 2010); others find declining betas (Cochrane)
2005). By modeling successive funding as nested options, our framework delivers a structural expla-

nation for declining betas—leverage falls as projects survive early stages—consistent with Berk, Green,

3Deal-level analyses often abstract from seniority differences across share classes (Gornall and Strebulaev, 2020) and complex
fund—entrepreneur contracts (Ewens, Gorbenko, and Korteweg) [2022).



and Naik (2004). Our framework yields startup betas that—due to their closed-form solutions—are

inherently intuitive and transparent.

Performance Benchmarking The public-market-equivalent (PME) approach (Kaplan and Schoar,
2005; Korteweg and Nagel, 2016) remains the industry standard for evaluating private equity, despite
its reliance on broad market indices. Recent work has refined this by introducing factor-tilted bench-
marks (Franzoni, Nowak, and Phalippou, 2012; Gupta and Van Nieuwerburgh, 2021). We contribute by
showing (1) the underlying asset risk is tied to the Nasdag-100, and (2) that the conditional payoffs to
startup portfolios (e.g., VC risk) are well approximated by a leveraged Nasdaq-100 exposure, implying

that a low-turnover levered tech-sector index is a natural benchmark for VC performance.

2 Empirical Characteristics of Startups

In this section, we document several empirical features of startups backed by venture capitalists. We first
examine the staged nature of VC funding and the eventual “exit” outcomes of VC-backed startups. Since
the most successful startups typically list on public exchanges, we then analyze the risk characteristics of
newly public, formerly VC-backed firms. Finally, we show that periods of elevated IPO activity coincide

with strong prior performance in public equity markets.

2.1 Funding Rounds and Exits of VC-Backed Startups

It is well-documented that venture capitalists provide funding to startups in stages. VC funds follow
this approach for several reasons (Gompers, 1995): staged financing (1) strengthens the entrepreneur’s
incentives to exert effort and (2) mitigates the risk of backing projects and technologies with highly un-
certain prospects. By providing capital in rounds, venture capitalists retain the option to discontinue
funding if a startup fails to meet key milestones. To study this behavior in the data, we use the Ventur-
eXpert deal-level and exits datasets, which we access via the LSEG platform.

In the deal-level data, we restrict attention to startups based in the United States and focus on ven-
ture capital rounds, which we identify as rounds where the “round type” is classified as “Seed”, “Early
Stage”, “Later Stage”, or “Expansion”, or where the “round security” is labeled “Venture Capital Eq-
uity Investment”. We further limit the sample to startups whose first funding round occurred between
1981 and 2016, yielding 38,796 startups and 112,937 funding rounds. To align the deal-level data with
our two-stage model, we aggregate any follow-on VC financings occurring within six months into a

single round. This prevents counting purely administrative “inside rounds” or “backstop financings”



as distinct milestone stagesﬂ When the round size is missing—which is the case for 12.73% of observa-
tions—we assume a value of $1 million, corresponding to the 17th percentile of observed funding round
amounts. We merge the deal-level data with the exit data, which contains information on exit type (e.g.,
IPO, mergers, write-offs) as well as the enterprise valuations for mergers. We classify a “High-Value
Merger” as a merger or acquisition (M&A) in which the enterprise valuation at exit is at least five times
the amount raised in the first VC round. “Low-Value Mergers” include M&As that do not meet this
threshold and M&As where the enterprise value is unobserved, as well as buybacks, reverse takeovers
(RTOs), and secondary sales. Finally, we classify an exit as a “Write Off” if the exit is explicitly recorded

as a “Write Off” in VentureXpert or remains unobserved. The latter applies to 24,162 (62%) startups.

Table 1: Funding Rounds and Exits of VC-Backed Startups

Frequency Count  Fraction (%)
IPO 3230 8.33
High-value mergers 1744 4.50
Low-value mergers 8742 22.53
Write-Off 25080 64.65
Number of VC rounds Mean Median
All outcomes 1.9 1
IPO 3.3 3
High-value mergers 3.4 3
Low-value mergers 2.8 2
Write-Off 1.3 1
Time to exit (years) Mean Median
IPO 5.0 42
High-value mergers 6.4 55
Low-value mergers 59 51
Funding round amount (2020 dollars) Mean Median
First round 12.3 4.5
Second round 21.3 8.8
Third round 36.7 12.5
Time between rounds (years) Mean Median
All outcomes 1.6 1.2

Note: This table shows exit outcomes: number of VC rounds, time between the first funding round and the exit, funding
amounts per funding round and the time between rounds. The sample includes all startups that received their first VC funding
round between 1981 and 2016, as reported by VentureXpert.

Table |1 summarizes the funding and exit patterns of VC-backed startups. Only a small share of

4Inside rounds—where only incumbent investors participate—are documented to comprise roughly 30% of follow-ons and
often serve merely as backstops when outside capital is unavailable (Ewens, Rhodes-Kropf, and Strebulaev} [2015). Similarly,
Broughman and Fried| (2012) find that most inside rounds reflect such administrative top-ups rather than true new invest-
ments (Broughman and Fried) 2012).



startups achieve successful exits through IPOs (8.3%) or high-value mergers (4.5%), while the majority
(64.7%) are written off. Consistent with the notion of staged financing, more successful outcomes are
associated with more funding rounds: startups that go public or exit via high-value mergers receive
a median of three VC rounds, compared to only one for startups that are written off. Time to exit is
relatively similar across exit types, with average and median durations between four and six years.
We also compute the size of funding rounds, converted to 2020 dollars using the CPI. The average
second-round funding amount is 21.3 million—roughly 1.73 times the average first-round amount (12.3
million); for medians, the ratio is 8.8 / 4.5 ~ 1.96. The average third-round amount is 36.7 million,
implying a ratio of 1.72 relative to the second round; for medians, the ratio is 12.5 / 8.8 ~ 1.42. These
funding patterns suggest that funding rounds increase over time, consistent with startups maturing and
uncertainty about the underlying technology gradually resolving. Finally, the average time between
funding rounds is 1.6 years, with a median of 1.2 years, further illustrating the staged nature and pacing

of VC investments.

2.2 Stock Exchange Listing of VC-backed Startups

Since an IPO is the ultimate “high-payoff” exit in our two-stage framework, we next document where
and how often VC-backed firms list on public markets. We use both VentureXpert (as described above)
and Jay Ritter’s U.S. IPO data to ensure robustness to any changes in coverage over time in either
datasetE] As shown in Table @ the time-series of VC-backed IPO activity is highly consistent across
the two sources.

Table 2: IPO Listings by Exchange

Fraction listing on exchange = VentureXpert  Ritter

AMEX (NYSE American) 1.2 % 1.5%
NYSE 8.7 % 10.2 %
Nasdaq 79.8 % 88.2 %
Other 10.2 %

Count 3230 3376

Note: This table reports the stock exchanges on which VC-backed startups eventually list their shares. The VentureXpert data
include both U.S. and international listings, whereas the Jay Ritter dataset focuses exclusively on U.S. listings.

Table [2| reports the stock exchanges on which successful VC-backed startups list their shares. The

5The Ritter data is further described in Ritter| (2015). The data focuses on U.S. IPOs after excluding those with an offer price
below $5.00 per share, unit offers, small best efforts offers, American Depositary Receipts (ADRs), closed-end funds, natural
resource limited partnerships, special purpose acquisition companies (SPACs), real estate investment trusts (REITs), bank and
S&L IPOs, and firms not listed on the Center for Research in Security Prices (CRSP) returns files within six months of the IPO,
thus restricting the sample to NYSE-, Nasdaq-, and Amex- (now NYSE MKT) listed stocks. The primary data source is the
Thomson Reuters (also known as SDC (Securities Data Company)) new issues database.



distributions are highly consistent across the VentureXpert and Jay Ritter datasets, with the main differ-
ence being that VentureXpert includes a small number of non-U.S. listings. The table shows that the vast
majority of VC-backed IPOs occur on Nasdaq: 79.8% in VentureXpert and 88.2% in Ritter’s data. In con-
trast, listings on the NYSE and AMEX are relatively uncommon, accounting for less than 10% and 2%
of IPOs, respectively. This pattern is consistent with Nasdaq’s historical focus on younger, high-growth
firms, particularly in the technology and biotech sectors.

Next, we examine the return dynamics of VC-backed firms following their IPOs. We obtain daily
stock returns from CRSP and estimate each firm’s beta with respect to the Nasdag-100 and the S&P
500, as well as total return volatility. Beta estimates include 20 lags of market index returns to capture
delayed responses and potential autocorrelation. Daily volatilities are annualized by multiplying by
V/252. We track these risk measures over the first five years of trading to assess how the risk profile of
newly public firms evolves over time.

Table [3| provides an overview of the estimates. The Nasdaq-100 beta of newly listed VC-backed
stocks is estimated to be 1.40 with a standard error of 0.084. The median across all stocks in the sample
is 1.29. When benchmarking the returns against the S&P 500, one expects the beta to be higher since the
Nasdag-100 has a beta of 1.20 with respect to the S&P 500. In line with this, the S&P 500 beta of newly
listed VC-backed stocks is estimated to be 1.81 with a standard error of 0.145; the median S&P 500 beta
is 1.57. The annualized volatility is estimated to be 0.91.

Table 3: Beta and Volatility of VC-backed newly IPO’d firms

Variable Mean Standard error pl0 p25 p50 p75 p90
First year after IPO (N = 3,325) Nasdag-100 Beta ~ 1.40 0.082 -0.19 054 129 202 287
S&P 500 Beta 1.81 0.145 -0.67 043 157 282 428
Volatility 0.91 0.008 049 062 077 1 1.33
Second year after IPO (N=3,151) Nasdaq-100 Beta  1.30 0.062 -019 047 117 192 27
S&P 500 Beta 1.80 0.114 -061 052 156 272 4.06
Volatility 0.98 0.012 047 059 076 1.03 1.39
Third year after IPO (N=2,760) Nasdaq-100 Beta  1.27 0.055 -023 049 117 193 238
S&P 500 Beta 1.78 0.098 -048 058 156 272 4.05
Volatility 1.01 0.020 045 058 076 1.02 1.34
Fourth year after IPO (N=2,305) Nasdaq-100 Beta  1.25 0.055 -02 045 116 188 277
S&P 500 Beta 1.65 0.096 -06 043 143 256 4.08
Volatility 0.97 0.150 044 056 074 098 1.32
Fifth year after IPO (N=2,024) Nasdaq-100 Beta  1.14 0.057 -0.11 051 114 183 264
S&P 500 Beta 1.59 0.095 -0.39 063 156 266 4
Volatility 0.96 0.190 044 056 073 099 132

Note: This table provides information on the return characteristics of newly-listed firms that were previously VC-backed.
Daily return data from CRSP is used in the estimation.



When exploring the life cycle of the beta after the IPO, one finds that the beta is decreasing in
subsequent years following the IPO. For instance, the Nasdaqg-100 beta is 1.40 in the year following the
IPO, decreasing to 1.30 in the second year. It then declines further to 1.27 and 1.25 in the third and fourth
years, respectively, and reaches 1.14 by the fifth year after the IPO. A similar trend is observed for the
S&P 500 beta, which decreases from 1.81 in the year following the IPO to 1.59 by the fifth year.

Figure 1| explores the time-series dimension by showing, for each calendar year, the distribution of
return characteristics across all firms listed in that year during their first year of public trading. There is
no obvious pattern in the stock betas (Panels A and B). In contrast, the volatility exhibits a more cyclical
pattern (Panel C). The volatility of newly listed VC-backed stocks was the highest during the tech bub-
ble, with a median value exceeding 1. The pattern for idiosyncratic volatility (Panel D) resembles the

pattern of total volatility.
Figure 1: Beta and Volatility of VC-backed newly IPO’d firms
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Note: This figure provides information on the return characteristics of newly-listed firms that were previously VC-backed,
categorized by their IPO year. Daily return data from CRSP is used in the estimation.



2.3 The Time Series of VC-Backed IPOs

Next, we examine the time-series patterns of successful exits—IPOs and high-value mergers—and relate
these to the number of startups that received venture funding. To mitigate concerns about coverage
and selection bias—specifically, that successful outcomes are more likely to be observed in the data
(Cochrane, 2005; Korteweg and Sorensen, 2010)—we draw on multiple data sources. The number of
IPOs per quarter is obtained from both VentureXpert and Jay Ritter’s dataset. Data on the number of
startups receiving their first round of VC funding—i.e., startup vintages by year—are obtained from
VentureXpert and Cambridge Associates. Because the Cambridge data report the number of funded
startups only from 1996 onward, we approximate the earlier series by regressing the number of startups
on the number of VC funds, which is available from Cambridge Associates beginning in 1981. The
most limited data pertain to high-value mergers, for which we rely solely on VentureXpert. Notably,
the dataset contains only a few mergers prior to 1992, suggesting limited or no coverage of mergers and
acquisitions during the early portion of the sample.

Table [ provides an overview of the data at an annual frequency. The number of startups receiving
their first round of VC funding—i.e., startup vintages—ranged from 302 to 629 per year between 1981
and 1994. This number then increased steadily from 1995 to 2000, peaking at 3,521 in 2000. Following
the burst of the tech bubble, startup formation declined sharply and has remained within a range of 900
to 1,700 firms per year since 2005. The number of IPOs exhibits a broadly similar pattern: VC-backed
IPO activity was elevated between 1994 and 2000, with particularly high levels in 1996, 1999, and 2000,
each exceeding 200 IPOs. Since the early 2000s, IPO activity has remained subdued, surpassing 100
offerings in only one year (2014). In contrast, the number of high-value mergers has shown a steady
upward trend over time. This is consistent with prior evidence suggesting that many firms are better off
remaining private due to the expansion and deregulation of private equity markets (Ewens and Farre-
Mensa, |2020), as well as with the growing tendency of large public firms to acquire smaller companies
in order to benefit from synergies in operations and innovation (Gao, Ritter, and Zhu, 2013; Bena and L4,
2014).

Using these data, we construct a quarterly measure of IPO probability defined as

#IPOs; + #High-Value Mergers,

1 «t-8
16 Lret_23 #StartupsT

IPO Probability, = , 1)

where #IPOs; and #High-Value Mergers, denote the number of VC-backed IPOs and high-value mergers

in quarter t, respectively, and #Startups_ is the number of VC-backed startups that received their first
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Table 4: Time-Series of Startups and Exits

Year #startups  #funds #startups #ipos #ipos #high-value
mergers
Source CA CA VX Ritter VX VX
1981 9 468
1982 11 464
1983 28 639 72
1984 32 584 42 36
1985 26 479 29 36
1986 30 538 78 81
1987 34 628 64 72 1
1988 26 556 37 35 3
1989 37 482 35 36 5
1990 17 404 43 44 2
1991 17 304 110 108 2
1992 21 422 133 126 21
1993 36 398 175 142 13
1994 41 444 137 110 29
1995 35 932 166 166 33
1996 1039 40 1203 239 244 45
1997 1046 70 1362 108 134 50
1998 1517 81 1847 61 84 52
1999 2336 110 2526 264 280 84
2000 3003 153 3521 249 233 134
2001 1481 54 1323 23 40 60
2002 1258 33 876 12 29 51
2003 1255 38 799 23 28 37
2004 1416 67 997 84 88 70
2005 1320 64 1104 52 54 76
2006 1508 80 1312 58 65 64
2007 1599 68 1461 83 90 86
2008 1418 66 1392 7 8 55
2009 908 23 907 14 13 40
2010 1206 50 1156 62 47 68
2011 1510 45 1433 53 50 97
2012 1368 56 1412 48 51 67
2013 1405 58 1535 79 81 54
2014 1522 81 1605 135 102 79
2015 1699 61 1771 79 73 46
2016 1351 68 1512 43 36 39
2017 67 47 45
2018 100 71 53
2019 90 52 48
2020 119 58 43
2021 185 92 55

Note: This data provides an overview of the startup data.
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round of funding in quarter 7. The denominator reflects the average quarterly number of startups
funded between t — 23 and t — 8, corresponding to a four-year window with a two-year lag. For example,
the IPO probability in 2021Q4 is computed by dividing the number of IPOs and high-value mergers in
2021Q4 by the average number of startups funded per quarter from 2016Q1 through 20190Q4.

Figure 2: IPO Probability vs. Stock Market Returns

0
' IPO probability |} o
— Nasdag-100
————— S&P 500
ﬁ: _
c
S
©
> -
E o - Q
] X
3 o
S 3
S g
Q o 4 {7
- ®
()
>
it
o -

! T T ! T I ! T
1985 1990 1995 2000 2005 2010 2015 2020

4Note: This figure compares the quarterly IPO probability (as defined by eq. (I)) with the stock market return over the past
-years.

Figure[f] plots the IPO (or “good outcome”) probability over time. Prior to 1990, this probability re-
mained below 10%, but it rose substantially during the 1990s, peaking near 50% during the tech bubble.
Following the collapse of the bubble, the IPO probability fell below 5% and has fluctuated around 10%
over the subsequent two decades.

The figure also compares the IPO probability to the cumulative returns of two major stock market
indices—the S&P 500 (SPX) and the Nasdaqg-100 (NDX)—measured over the preceding four years (i.e.,
from the end of quarter t — 16 to quarter t). The figure highlights a strong positive correlation between

public market returns and the likelihood of successful startup exits: when equity markets have per-
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formed well, more VC-backed firms have either gone public or exited via high-value mergers. Gompers
and Lerner (2004) document a similar pattern for the number of biotech IPOs and a biotech equity index.

Notably, the IPO probability has a stronger correlation with the NDX return (69%) than with the S&P
500 return (47%). This is consistent with the fact that most VC-backed startups list on Nasdaq (as shown
in Table [2) and are therefore more exposed to the performance of the NDX index. This distinction is
particularly salient during the tech bubble, when the performance of the NDX and SPX indices diverged
sharply.

3 A Valuation Model of Startups and Venture Capital

Startup ventures display three hallmark features. First, they face very high failure rates—roughly two-
thirds of startups never return investors’ capital—and extreme payoff skewness: most investments fail
(zero payoff), while a small fraction deliver outsized gains, much like out-of-the-money call options
(Gompers and Lerner, 2001; Kaplan and Stromberg), 2003} Berk, Green, and Naik| |[2004; Cochrane| 2005).
Second, to manage downside risk and align incentives, financing is divided into discrete, milestone-
contingent tranches rather than provided all at once (Sahlman) 1990; Gompers, 1995; Wang and Zhou,
2002). Third, realized exit values and the timing of follow-on rounds co-move with aggregate mar-
ket conditions—particularly Nasdaq index performance—so systematic market risk plays a key role in
startup payoffs (Ritter} [1991). In this section, we embed these features into a parsimonious valuation

framework that is readily taken to the data.

3.1 Staged-Financing Process

Figure 3| depicts the two-stage decision tree at the heart of our model. We model a startup as a series of
staged investments Ko, K, K> across three development periods, combined with a claim on a terminal
(post-money) payoff A,. At each decision date T; and T3, the investor chooses whether to continue
by making the next required investment K;, or to exit and realize the indicated payoff. We denote the
startup continuation value before funding at T; as C; and its initial value as Cy. The initial investment,
Ko, does not affect the initial value of the startup, but affects the founder’s share, such that the founder’s
ownership shareis 1 — Ié—g

Specifically, at T (end of the “Early Stage”), the investor either continues by investing K; when the
continuation value exceeds the required investment, C; > Kj, or liquidates for zero. If continued, then
at T, (end of the “Late Stage”), the firm either goes public and realizes A, — K, if Ay > K = ff—zq) or
exits via M&A for a partial recovery of the underlying asset value, $A,. To summarize, there are three

exit possibilities: write-off, M&A, or IPO.
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Figure 3: Funding Stages and Payoffs over the Startup Lifecycle
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Note: This figure illustrates the startup model and its staged funding structure.

3.2 Startup Firms as Compound Options

We now map the decision tree into a nested call option on the underlying asset. The required investment
amounts and their timing are pre-specified, making the optimal funding and continuation decisions
dependent solely on the realized underlying asset value. The underlying asset pays no dividends and
follows geometric Brownian motion. The distribution of the asset A at time ¢ under the risk-neutral

measure is given by

1
At :Ao-e(rfifalzﬁ\)H»aA\ﬁZA (2)

where Z4 ~ N(0,1) (N is the cumulative standard normal distribution), r f is the risk-free rate and o4

is the asset volatility.
3.2.1 Simplified example: Valuation with no recovery

To build intuition, we initially set the late-stage recovery parameter to zero (¢ = 0), so that the lower

branch at T, pays zero and K; = Kj. The late-stage payoff is then simply
max(A; — Ky,0),

a standard European call option that can be valued with the Black-Scholes option model (Black and

Scholes| (1973); Merton| (1973)). Denote the time-T; value of the late stage payoff as C;, then

C1 = Call(Al,Kz, Tz)
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where Call(A1, Ky, T2) denotes the Black-Scholes call option value where the underlying value is A;, the
strike price is Ky, and the option maturity is o = To — T7.
At the decision date Tj, the firm continues only if the continuation value, C;, exceeds the required

investment amount, K, and otherwise it liquidates for zero. Hence, the early-stage payoff is
max(C; — K3, 0).

Standing at Tp, the startup can be viewed as a call option on the late-stage call option (there are two call
decisions: one at T; and one at T). This call-on-call option can be valued with the Geske compound

option valuation model (Geske (1979))@ Thus, the initial startup value is given
Co = CompoundCall(Ay, Ky, Ky, 71, 1)

where CompoundCall(Ao, K1, Ky, T1, 1, T2) denotes the compound call option value where the underly-
ing is Ay, the time to the first call date is 71 = T; — Ty, the strike price at the first call date is Cy, the time

between first and the second (final) call date is 7» = T, — T, and the final strike price is K».
3.2.2 Valuation with generalized recovery

We make one modification and allow for partial recovery on the lower late-stage branch at T, which
will better match empirically observed late-stage exits. Specifically, if the late-stage investment at T,
is not made, the firm is sold for ¢ - A, where ¢ € [0,1] is a recovery rate. This modification sets the

late-stage payoff to be the greater of two positive values:

max(A2 - Kz,gb . Az). (3)

This means investment K, will be made if Ay — Ky > ¢ - A and therefore if A, > Kj where K3 = 15—24)

The terminal payoff in equation (3) can be replicated with a combination of the underlying asset and a

standard call option with a modified strike price, Ki = K»/(1 — ¢), which adjusts the strike to reflect

the recovery condition Using the Black-Scholes call option formula, we can derive the startup value at

8Cassimon, Engelen, Thomassen, and Van Wouwe, (2004) generalize the Geske|(1979) two-stage compound option model to an
N-stage model.
"This can be easily obtained from re-arranging: max(A; — Kp, ¢ - A2) = ¢ - Ay + max((1 — ¢)Ay —Kp,0) = ¢ - Ay + (1 — ¢) -

max (A — 15—247, 0).
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T1 as

Ci=¢-Ai+(1—¢) [A1-N(cy)—K; -7 N(c)]

=Call(A1,K3,1)
where @)
o ln(A1/K§) + (Tf =+ %0’124) T
T TAyT2

c— =y —0aV T

Intuition for this replicating portfolio is developed in Figure 4, which plots the payoff function of
an option with strike price K, = 100 and a recovery rate ¢ = 0.2. The payoff is calculated as max(A; —
K,¢ - Ap), where A, represents the underlying asset value at maturity. The figure highlights two key
points, including the strike price (K3) and the effective strike price (K3 = 15—24)). A portfolio that owns ¢
shares of the underlying asset and (1 — ¢) call options on the underlying with strike price equal K5 will
perfectly replicate this payoff.

Figure 4: Late-Stage Payoff with Partial Recovery
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This figure illustrates the payout profile of a call option with fractional recovery. The figure illustrates the stage-2 startup
pre-IPO conditional payoff, where the terminal underlying asset value is Aj, the required investment to pursue an IPO (strike
price) is K, = 100, and the fractional recovery rate is ¢ = 0.2.

The early-stage payoff of the startup with a terminal recovery value (at Tj) is still
max(C; — K1,0), )

As before, the startup will only receive funding Kj if its post-money value C; exceeds the funding cost,
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i.e., C; > Kj. The initial startup continues to resemble a call option on the late-stage call option, but
where the late-stage option now includes the recovery possibility. We next derive the initial startup

value Cy using a modified-version of the Geske| (1979) compound option formula.

Compound option pricing with recovery. The|Geske|(1979) compound option formula is used to value
an option on another option, such as a call-on-call. It works by accounting for the two stages of decision-
making inherent in a compound option. At the first decision point Tj, the holder of the compound
option decides whether to exercise it to obtain the embedded late-stage option. This occurs if the value
of the late-stage option at T; exceeds the early-stage strike price. Denote the minimum A; that makes it
optimal to exercise the stage-1 option as Aj. If this condition is satisfied, the holder pays K; to acquire
the embedded late-stage option, and the compound option continues to the second stage. Otherwise,
the compound option expires worthless. If the compound option is exercised at Tj, the final payoff
depends on the late-stage option’s value at its final maturity T. For our call-on-call, this occurs when the
underlying asset price exceeds the embedded late-stage option’s effective strike price K3 (i.e., reflecting
the recovery possibility).

The compound option’s value at time Ty reflects the risk-neutral probabilities of satisfying both

conditions:
1. intermediate early-stage condition: C; > Kj or, equivalently, A; > A],
2. final late-stage condition: A, > K3.

The Geske model combines these probabilities into a two-dimensional framework. A formula for
the modified compound option—a call option on a call option with a recovery value guarantee—can be

assembled with the logic of the Geske model. Using the formula, the initial startup firm value Cy can be
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derived as

Co=¢-Ao-N(ay)+(1—¢)-Ao-Na(ay, by, \/1/ (2 +11))

—(1—¢)-K e @ ) Ny(a_, b, /1 /(+7))

—Ky-e "M N(an),
where

2, — M(A/AD + (p+505) T (6)

Ta/T1

_=ay—oa/T

In(Ao/K3) + (ry + 303) (m+ 1)
cavT+T

b =b, —oavm+1.

b+:

where: N (I, k, p) is the bivariate cumulative normal distribution function with & and k as upper integral
limits and a correlation coefficient p = \/71/ (T2 + 11) reflecting the time to maturity of the initial call
option relative to the time to maturity of the embedded call, where 71 = T1 — Tpand ©» + 11 = To — To.
The intuition behind equation@is as follows. Ag - Na(ay, by, \/m ) is the expected termi-
nal value of the underlying, given the joint probability of being in-the-money at T; and T5;
No(a_,b- \/m ) is the joint probability of being in-the-money at T and T; Ao - N (a4.) is the
expected value of the underlying asset at T;, conditional on being in-the-money (i.e., A; > A}); and
N (a-) is the probability of being in-the-money for the intermediate decision at T;. The closed-form
valuation formula derived from Geske’s two-stage compound-option model explicitly captures the tim-
ing and interdependence of the two decision points, ensuring that the startup’s initial value reflects the

underlying asset’s risk-neutral dynamics across both stages.
3.2.3 Exit Probabilities

Our model does not only allow us to value startup firms, but also provides closed-form solutions for
the probabilities of various exit outcomes. The unconditional (Q-measure) probability of liquidation (i.e.
exit at the end of stage 1) is equivalent to 1 - probability of the initial call option being in the money at

the end of stage 1:

Pr?(Continuation) = N (a_) )
r9(Liquidation) = 1 — A (a_).

18



The unconditional (Q-measure) probability of IPO is the joint probability of being in-the-money at T;

and T»:
Pro(IPO) = Na(a_,b_, /1 /(1 +11)). 8)

The M&A probability can be computed as 1 minus the sum of the unconditional liquidation and the

unconditional IPO probability.

3.3 Integrating the CAPM into the Startup Valuation

As indicated by Figure[f] startup exit outcomes co-move with broad market performance, implying a
non-diversifiable (systematic) risk component to each startup’s total risk. When startups are pooled into
VC funds and those funds become institutional portfolios, this market-driven risk becomes even more
prevalent as idiosyncratic risk gets diversified away.

To analyze systematic risk, we integrate the compound option framework with a CAPM-style mar-
ket factor. The key idea is to use the realized market return as the relevant state space for asset pricing,
consistent with the |Sharpe (1964) and Lintner|(1965) CAPM. Terminal asset values are driven in part by
a market factor, which allows for startup firm payoffs to be characterized as a function of the realized
market return. This follows the spirit of structural-credit applications (e.g., (Coval, Jurek, and Statford
(2009) allowing us to capture how systematic shocks shape startup payoffs.

To discern systematic and startup-specific (idiosyncratic) factors, we start thinking about a large
cross-section of startups and denote an individual startup by i. We assume that the risk-neutral dis-
tribution of the gross market return from time 0 to time t is given by the following (where M; can be

thought of as a total return index)

1
Mt —e (rffzzf,%,) 0t Zon

MO s (9)

where 0y, is the volatility of the market return and Z,, ~ N(0,1) is a systematic market shock. The un-
derlying asset value of startup i, A;, is driven by a combination of the market shock and an idiosyncratic

shock, Z; . ~ N(0,1), such that

1o .
Ai,t — Ai,O . e(rf 2‘7,1) t“"ﬁa Um\/EZm‘HTe\/EZz,e, (10)

where B4 is the systematic market exposure (CAPM beta) of the asset, and e = \/(7124 — 34(7,%1 is the

idiosyncratic volatility of the underlying asset. Intuitively, one could think of this “change” as breaking

8Coval, Jurek, and Stafford| (2009) embed the CAPM within Merton’s (1974) credit model to study bond portfolios and CDO
tranches. By mapping nonlinear systematic exposure into realized market returns, they enable no-arbitrage pricing via index
option portfolios.
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up the total shock Z; 4 in equation (2) into a market- and a startup-specific component. Since this leaves
the distribution of A;; unchanged, the option pricing framework outlined above continues to hold.
Ba _ 1, o
] 1 /5 Um\ﬁzm — % . ( 'BA’/f+ ‘BAU-’”).t 1 1
From equation (9) it follows that ef4 ( Mo) e 2 , implying that the asset

distribution conditional on the market return is

Ba 1
Ai,t = Ai,O‘ <AAjII;> -e<(1*ﬁA)rf*§‘7§) t+05\/?lee‘ (1)

Alternatively, one can also define the gross return of the market in excess of the risk-free rate as follows

(since M; is compared to My compounded at the risk-free rate)

N M,
M; = Moo (12)
which means we can write
- 1 ,
Ay =Aip- (Mt)ﬁA .e(rf_zag) t+‘7€\ﬁzbf, (13)

Note that the only difference between equations and lies in how the risk-free return is incor-
porated into the asset value A;;. We will explore equation (13) when we analyze startup properties

conditional on market excess returns below.

3.3.1 Startup Betas

By embedding a systematic market factor into our option-pricing framework, we can directly derive the
CAPM beta of startups. Specifically, startup beta is given by scaling the underlying asset’s beta by the
option’s delta and the option-implied leverage (i.e., the asset-to-startup value ratio):

Ajy
v
Cit

Bit = Ba x Ajp X (14)

where the option delta A;; = g%’}'t measures the sensitivity of the call price with respect to the underlying

asset value. Solving for the option delta, one computes the early-stage beta as

A
ﬁStartup,O :ﬁA X A0 X Cio
0 (15)

where Ag=¢N(ay) + (1—¢) Na(ag, by, VT /D)
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Similarly, the late-stage beta of startup i can be computed as

A1
Bin =Ba x Aijg X Cl’
i1

where Ay =¢+ (1—¢)N(cy)

This means the value-weighted late-stage beta is given by

Bstartup1 = E[Bin] = /[31',1 Cip - le >k di, (16)
1

where the indicator Ic,, » g, keeps track of surviving startups.

3.4 The Dependence of Exit Probabilities and VC Returns on Market Returns

Integrating a market factor into our option pricing framework allows the model to speak to the market-
dependence of (i) various VC exit probabilities and (ii) venture capital returns. We illustrate this next.
For simplicity, we start by focusing on stage-1 outcomes and returns (the remainder of the paper then
primarily deals with all-stage outcomes and returns).

The dependence of VC outcomes on the market return is illustrated in Figure 5| The figure demon-
strates the important role of systematic risk in the underlying assets for shaping exit rates and portfolio
returns. The left panels show results with B4 = 0 and the right panels show results with f4 = 1.4.
All other parameters are set to the calibrated set shown in Table [5|below. The analysis draws on sim-
ulations of 10,000 startup firms. The x-axis in all plots is the market excess return defined in equation
(I2)—which we call “Realized Moneyness.”

The first row displays the distribution of excess market returns. Of course, this is unaffected by the
asset’s beta.

The second row visualizes individual startup values C;; at stage-1 after liquidations. For each real-
ized market excess return value, we use equation to simulate underlying asset values and then use
the Black-Scholes option formula @) to compute the startup value. If the value is below Kj, we set the
value to 0. The key insight from these plots is that while startup values cluster near zero regardless of
market conditions, the probability of high valuations increases with market returns when 4 > 0 (right
panel).

The third row visualizes continuation and liquidation probabilities at stage-1 conditional on the ex-
cess market return at stage-1. Define the conditional cutoff (see the appendix for the derivation)

_ In(Ag/A}) + (rfTi+ Ba - In(My))

M) = ,
1) e /T
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Figure 5: Stage-1 State-Contingent Model Properties
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Note: These plots illustrate the state-contingent properties of stage-1 model outcomes for f4 = 0 on the left-hand side, and
Ba = 1.4 on the right-hand side. The graph is based on the simulation of 10,000 startups for each market excess return
realization (“Realized Moneyness”).

we can write the continuation and liquidation probabilities at stage-1 conditional on the excess market

return at stage 1, M, as

Pr(Continuation | M;) = N (a_(My)), (17)

Pr(Liquidation | My) =1—N(a_(M;)) = N (—a_(M)), (18)
The conditional liquidation probabilities are computed both analytically, using the conditional formu-
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las, and via simulation; the two approaches yield equivalent results except for “simulation noise”. The
simulated probability is computed as the fraction of the 10,000 startups where the continuation condi-
tion C;; > K; is satisfied. The plots reveal a key prediction: when startups have positive beta, their
continuation probability increases strongly with market returns. For zero-beta startups, continuation
probability is independent of market conditions. Thus, the sensitivity of VC outcomes to market returns
depends on the underlying’s systematic risk.

The bottom row analyzes the conditional expected portfolio returns for initial investors (founders
and early-stage VCs) over stage-1. We compute the conditional expected return as the expected startup

payoff by the initial investment (which is the initial startup value)

R(¥) — E[max(C;1 C—OKLO) | My ] (19)

The takeaway from the plots is that the VC portfolio payoff is strongly increasing in the market returns
when the underlying asset has a positive beta (right panel). With zero beta, VC returns would exhibit

no relationship to market returns (left panel).

4 Model Calibration and Evaluation

Our option-based model provides a simple framework to value startups. In this section, we (1) calibrate
its parameters to match the unconditional rates of liquidation and IPO observed in the data, and (2)
evaluate its ability to explain joint dynamics of startups’ exit outcomes and equity market returns. Thus,

the model is calibrated with unconditional moments, but evaluated with conditional moments.

4.1 Model Calibration

To calibrate the model, we infer several model parameters directly from the data and estimate the re-
maining ones by matching unconditional exit probabilities in the data. To match real-world exit out-

comes, we need to compute model outcomes under the P-measure.
4.1.1 P-measure Exit Outcomes

Fortunately, in a lognormal setting, switching from the risk-neutral Q-measure to the physical P-measure
is straightforward. This transformation—formally justified by Girsanov’s theorem—amounts to replac-
ing the risk-free drift 7¢ in the underlying asset’s process with its physical drift. To model the real-world,
the drift of the market return becomes

T’f+/\m
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where A, is the market risk premium. Similarly, the drift of the underlying asset’s value is
Ty + ﬁ A Am

where B4 - A;, represents the asset’s equilibrium risk premium under the CAPM, and B4 is the asset’s
CAPM beta.

Thus, to convert the unconditional Q-measure liquidation and IPO probabilities given by equations
(7) and (8) into objective P-measure probabilities, we replace the risk-free drift in the asset process with
its physical drift in each of a_ and b_. The resulting probabilities, Pr” (Liquidation) and Pr”(IPO) are

then calibrated to match empirical exit rates.
4.1.2 Calibration Results

To bring the model to the data, we rely on the data to the fullest extent possible. Several of the model
parameters can be directly inferred from the data, such as the volatility and the beta of the underlying
asset, see Table 3l We set the Nasdag-100 risk premium to the ex-post realized excess return during our
sample and the risk-free rate to the average 4-year Treasury rate. The strike ratios K,/K; and the time-
to-continuation decisions 77 and T, are chosen in line with the VC characteristics documented in Table
This leaves two parameters to be calibrated: the stage-1 strike K; and the recovery rate ¢. We select
the unconditional IPO rate of 12.8"/(ﬂ and the write-off rate of 64.6% (see Table|l) as calibration targets.
Table |5/ shows the calibration results. It summarizes which parameters are inferred directly from
data (asset value, volatility, beta, market risk premium, risk-free rate, stage durations, and K;/K;) and
which are calibrated. We solve for the stage-1 strike K; and recovery rate ¢ such that the model’s P-

measure exit probabilities match the empirical targets. We find that K; = 77 and ¢ = 0.56.

Startup betas. The calibrated model directly provides startup beta estimates, as outlined in equations
and (L6). These stage-specific betas provide the foundation for the replicating levered-NDX strategy
evaluated in Section[5| The calibration implies an early-stage beta of 2.2 and a late-stage beta of 1.6. Both
exceed the underlying asset’s CAPM beta of 1.4—exactly as theory predicts when a startup is viewed
as a call-like derivative whose option-implied leverage amplifies the systematic market exposure of the

underlying asset.

4.2 Model Evaluation: Startup Exits and Market Dynamics

Our structural compound-option model is calibrated to unconditional exit rates (liquidations and IPOs).

We next evaluate the model based on the conditional IPO probability to see if our mechanism for market-

9The IPO probability measures the combined effects of “strong outcomes,” including IPOs and high-value acquisitions.
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Table 5: Model Calibration

Fixed Parameters Symbol Value
Underlying value Ay 100
Duration first stage (yrs) T 2
Duration second stage (yrs) k) 2
Vol of underlying oA 0.90
4yr risk-free rate ry 0.05
Ratio of funding amounts K> /Ky 1.73
Beta of underlying Ba 1.40
Ex-post market risk premium Am 0.13
Moments Target  Calibrated
Unconditional IPO probability 0.13 0.13
Unconditional write-off probability 0.65 0.65
Calibrated Parameters Symbol Value
Funding amount K1 77
Recovery parameter ¢ 0.56
Implied values Symbol Value
Startup value Co 42
Early-stage NDX beta Bstartup,0 2.23
Late-stage NDX beta Bstartup,1 1.55

Note: This table shows how the model parameters are calibrated.

dependent VC outcomes reproduces the empirical co-movement of IPO rates with public equity returns.

For each quarter t from 1987 through 2024, we simulate the outcomes for 10,000 startups receiving
their initial funding in quarter t — 16, using realized equity market returns to compute asset values
at each stage. We construct the startup’s underlying asset value in two parts: a systematic market
component and an idiosyncratic shock. Since this simulation is based entirely on realized returns, the
resulting IPO probabilities are effectively computed under the P-measure.

To model the systematic component, we compound the daily returns of a portfolio that holds 140%
in the Nasdag-100 (i.e., borrowing 40%) over the two-year periods from ¢t — 16 to t — 8 (for stage 1) and
from t — 8 to t (for stage 2). This approach uses the actual empirical return distribution and avoids
imposing a lognormal structurem We then apply an idiosyncratic term by simulating Z; . ~ N(0,1)
and scaling the systematic asset path by e 20EHH0eVZic

This yields the stage-1 asset value A, ; for each startup i. We apply the stage-1 exerciserule A;; > A]
to determine which startups continue to stage 2. For survivors, we simulate the stage-2 asset value A;»
using the same approach over the next 2-year window. We then apply the stage-2 threshold A;, > K3;
the fraction of startups satisfying both conditions defines the model-implied IPO probability in quarter
L.

10The daily return of the systematic component is given by r 7+ 14 (rnpx — 7¢), compounded over each 2-year period. This

B . . o
corresponds to the term (%) "L e=Ba)rst from equation (II), but using actual realization of returns.
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Figure 6: Time series of IPO probabilities: Model vs. Data
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Note: This figure compares the model-implied quarterly IPO probabilities with the empirical IPO probabilities constructed
following equation ().

Figure [f] plots both the empirical and model-implied quarterly IPO probabilities. The model closely
tracks the high run-up in IPO rates during the late-1990s and the subsequently lower rates post-2001.
The model underpredicts the IPO spikes in the early 1990s when equity markets were strong, but growth
firm valuations were less extreme than during the tech valuation peak. Overall, the close alignment be-
tween empirical and model-implied IPO rates demonstrates that our simple CAPM-driven compound-
option mechanism captures the key co-movement between public market returns and VC exit outcomes.

To quantify the model’s predicted sensitivity of startup exit rates to public markets, we estimate
quarterly regressions of “good outcome” rates (IPOs + high-value acquisitions) on the prior four-year

return of the Nasdag-100 index:
IPO_Rate; = by + by - RN} + &, (20)

where R?Bﬁ denotes the log return of the Nasdag-100 from four years before quarter ¢ through quarter
t. We run this regression on (i) the empirical IPO series, (ii) the model-implied IPO series, and (iii) the
empirical rates on the model rates, as well as in two subsamples (pre-2000 and post-2000).

Table |§|reports the slope coefficients and R? values. Empirical IPO rates are strongly linked to recent
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NDX returns, with a slope coefficient of 0.06 (t-statistic = 5.8) and R? of 0.47. The model, calibrated only
to the unconditional IPO rate, has a slope coefficient of 0.07 (t-statistic = 22.9) and R? of 0.93. A regression
of empirical IPO rates on the model IPO rates produces a slope coefficient of 0.74 (t-statistic = 4.9), which
is not reliably different from 1, and R? of 0.39. Finally, the last two specification show regressions of
empirical IPO rates on 4-year NDX returns during the pre- and post-2000 samples, showing that these

sensitivities are similar in both samples.

Table 6: IPO Probability vs. Market Returns

Quarterly IPO probability
@ 2) ©) 4) (5)

Data Model Data Data Data

4-year Nasdaq-100 return 0.0598***  0.0711*** 0.0501**  0.0607***

(0.0103)  (0.00311) (0.0229)  (0.00398)
Model-implied IPO probability 0.735%**

(0.150)

R? 0.474 0.933 0.388 0.236 0.728
N 140 140 140 53 87
Sample Pre-2000  Post-2000

Note: Each column reports estimates of 8 and R? from regressions of quarterly IPO (good outcome) rates on the preceding
four-year Nasdaqg-100 return, as in equation 20). Columns (1)-(2) use the empirically-observed and model-implied IPO
probabilities, respectively; (3) regresses empirical on model-implied; (4)—(5) present the empirical sensitivity in pre-2000 and
post-2000 subsamples.

We view these results as a major success for the basic design of the structural model. The compound
option component allows for the calculation of various exit probabilities, and the market factor compo-
nent introduces the ability to calculate these exit probabilities conditional on market return realizations,

which match the empirical patterns remarkably well despite only being calibrated to the unconditional

moments.

5 Venture Capital Returns

In this section, we deploy our structural compound-option framework to examine real-world VC per-
formance. We begin by highlighting a surprising result: the model implies that the returns from startup
investing can be closely replicated by taking a levered position in the Nasdaqg-100. Building on this
insight, we apply the levered-NDX strategy to assess the performance of actual VC funds along two
dimensions. First, by evaluating vintage-level returns; second, by evaluating aggregate index-level re-

turns.
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5.1 Levered Nasdaq-100 Replicating Strategy

At first glance, using our model as a benchmark for VC may appear infeasible: compound options on
individual Nasdaq stocks do not trade, and constructing a dynamic option-based replication strategy
would be costly and complex. We therefore seek a practical alternative. Specifically, we compare model-
implied payoffs to those of a levered Nasdaq-100 position. Such a levered strategy can be implemented
at low cost by buying NDX futures or Nasdag-100 ETF shares on margin.

The compound-option model implies that at each funding stage k a startup claim has a beta Bstaytup
with respect to the Nasdaq-100 index. We replicate this with a levered NDX strategy with the same beta.
Specifically, from time Tp to T1, we hold Bstartup,0 units in a Nasdaq position. Startups surviving the early-
stage then exhibit a beta of Bst4tup,1, which we match by holding Bstartup,1 units in NDX. For example, in
our calibrated model, an early-stage beta of 2.2 is matched by holding 220% of portfolio value in NDX
(i.e., borrowing 120% at the risk-free rate). The late-stage beta of 1.6 corresponds to a 160% allocation to
NDX (borrowing 60%).

Figure[7compares the conditional compound-option-model payoffs (solid lines) to this beta-matched
levered-index strategy (dashed lines) for the first (left panel) and the second stage (right panel). The top
to bottom panels show results for four levels of idiosyncratic volatility c.. In the top panel, with no
idiosyncratic volatility (i.e., all startups share the same outcome), the model-implied payoff diverges
significantly from the levered-index strategy. As idiosyncratic risk increases (moving down the rows),
two things change. First, the convex “kink” at the stage-1 exercise boundary, in the dimension of market
return, smooths out, dampening the stage-1 option’s intrinsic convexity. Second, the effective portfolio
beta declines, additionally reducing the levered index’s convexity. Consequently, when o is large (in
the range estimated for recently public VC-backed firms, e.g., 0 = 0.8), the beta-matched levered-index
strategy’s payoffs match the model payoffs with high accuracy for both stages. Key to this finding is
that the idiosyncratic risk of startups is high, a feature emphasized in prior deal-level studies (Cochrane,
2005 Korteweg and Sorensen, [2010).

The right-hand panels show late-stage payoffs assuming an early-stage moneyness M; = 1.5 (the
market has done well during the early stage)E] The recovery feature lowers model convexity (see Figure
4), and the late-stage beta is smaller, so the levered-NDX strategy matches the model payoff for all levels
of idiosyncratic volatility.

We conclude that the model’s conditional payoff profile can be closely replicated using a levered

Nasdag-100 strategy. By relying only on highly liquid futures or ETFs and model-implied beta ex-

'We find that the replication also works almost perfectly for different levels of first-stage moneyness (unreported).
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Figure 7: Approximating Model Payoffs with Levered Nasdaq-100 Exposure
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Note: This figure compares conditional model payoffs (blue lines) to the conditional payoffs of a levered Nasdaq-100 strategy
(dotted lines). The leverage is chosen such that model-implied startup beta is matched. The left panels show stage-1 payoffs,
and the right panels display stage-2 payoffs, conditional on a stage-1 moneyness of 1.5. The rows vary in terms of idiosyn-
cratic risk, holding other calibrated parameters constant except for asset volatility, which remains a function of idiosyncratic

volatility, o4 = y/p% 07 + 02.
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posures, this approach offers a practical, low-cost implementation of systematic VC risk—without the

need to trade long-dated options.

5.2 Vintage Returns

To evaluate how well our structural model and its simpler levered-NDX proxy capture real-world
VC performance, we compare their vintage-level IRRs to those reported by two industry benchmarks:
pooled vintage IRRs from Cambridge Associates (CA) and Preqin. Vintage-level internal rate of return
(IRR) are a central metric of VC performance. To compute vintage-level pooled IRRs, the net cash flows
(distribution minus contributions) of all funds are pooled together; the vintage IRR is computed as the
discount rate that sets the net present value of these cash flows to zero.

Crucially, replicating VC returns in a public-market equivalent requires knowing both the appro-
priate market index and the systematic exposure (or, equivalently, the leverage). This cannot be directly

inferred from private-fund returns, but is delivered by our structural model.
5.2.1 From Conditional Payoffs to Vintage-Level IRRs

To compare our model and the levered-NDX strategy to vintage-level VC IRRs, we convert the model’s
state-contingent payoffs into a vintage-level cash flows faced by limited partners (LPs) in a VC fund
vintage. In practice, LPs make a series of capital contributions (negative cash flows) and receive distri-
butions (positive cash flows) over time. We match this vintage-level cash flow profile with the following

procedure.
Constructing vintage-level cash flows & IRRs. For each quarterly capital call in the historical vintage

(at times ¢;), we imagine investing that dollar into our replicating strategy:

1. At each contribution date t;, for every $1 of actual vintage capital called, we invest $1 into the
stage-1 replicator (either the calibrated model or the levered-NDX strategy) for a horizon of 71 = 2

years.

* Model: every $1 is allocated to a diversified set of individual early-stage startups. The under-
lying asset of each startup is a daily-rebalanced NDX position with 1.4 beta plus idiosyncratic

risk (consistent with our simulation assumptions).

* Levered-NDX: every $1 is used to enter a position with $2.2 NDX-exposure.
2. Att; + 1, roll all remaining value into the stage-2 replicator with horizon 7, = 2 years.

* Model: Surviving startups become late-stage startups. The underlying asset of each startup

is a daily-rebalanced NDX position with 1.4 beta plus idiosyncratic risk.
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¢ Levered-NDX: the portfolio value is used to establish a position with 1.6 x Nasdag-100 expo-

sure.

3. Att;+ 11 + T, roll any remaining value into a pure equity index position (beta equal to f4) and

hold until a maximum maturity of 6 years or until the final distribution date for that vintage.

* Model: Startups become mature firms, replicated using a daily-rebalanced NDX position with

1.4 beta plus idiosyncratic risk.

¢ Levered-NDX: Use the remaining value to establish a position with 1.4x Nasdag-100 expo-

sure.

At each historical distribution date, we exit positions and withdraw the cash needed to match the
vintage’s realized distribution. If the replicating strategy’s balance is insufficient, the cashflow stream
terminates at that point. We follow a first-in, first-out rule, so positions established earlier are exited
first. Any surplus remaining at the final distribution is paid out as the terminal cash flow.

To get the cash flows of fund vintages, we use Preqin cash flow data and sum all distributions and
contributions across all funds of a given vintage. We also count any remaining valuation at each fund’s
last observation as a distribution. These data are available for vintages starting in 1992. The vintage

IRRs are highly consistent with the vintage IRR reported by CA, see Appendix Table [[A1]
5.2.2 Comparing VC Vintage IRRs to Model and Levered-NDX Benchmarks

Figure |8 presents a bar chart of IRRs by vintage cohort for all four series (model, levered-NDX, Cam-
bridge, Preqin), while Table[7(A) reports detailed summary statistics and Table[7[B) shows the regression
results of VC vintage IRRs on model-implied and levered-NDX vintage IRRs. Appendix Table re-
ports the full set of IRRs for each historical vintage.

Over the main 1992-2018 sample, both the compound-option model and the levered-NDX replicator
deliver nearly identical distributions of vintage IRRs, in terms of both means and volatilities (see Table
[7). A regression of model-implied IRRs on the levered-NDX IRRs confirms the close alignment: the
estimated slope is 1.02 (SE = 0.01), statistically indistinguishable from 1, with an intercept of —2.3%,
indicating the levered-NDX proxy has a slightly higher average return. Thus, the levered-NDX strategy
achieves a close replication of the returns generated by our structural compound-option startup model.

Moreover, Table[7|compares actual VC IRRs to model-implied and levered-NDX IRRs. We find that
the model-implied IRRs explain 92% of the variation in Preqin VC IRRs and 82% of variation in the
CA VC IRRs. The slope coefficient is also statistically indistinguishable from 1. This is a remarkable

success: our compound-option pricing model—calibrated only to unconditional exit outcomes—is able
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Figure 8: VC Vintage Returns (1981 - 2018)
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Note: This figures compares the vintage internal rate of returns (IRRs) of the model, the levered-NDX strategy, and Venture
Capital returns from Preqin and Cambridge Associates. The levered NDX strategy is designed to replicate the contribution
and distribution pattern of the VC vintages according to Preqin.

to explain the return variation across historical venture capital vintages with striking accuracy. The
levered-NDX strategy does equally well, explaining 90% of the variation in Preqin VC IRRs and 83% of
variation in the CA VC IRRs.

Notably, both Pregin and Cambridge Associates report very similar IRRs—whether for the full
1992-2018 period or when split into pre-2000 and post-2000 sub-samples. The returns of pre-2000 vin-
tages are similar for actual VC funds and our replication strategies: the mean IRRs are 54% for Cam-
bridge Associates, 58% for Preqin, 54% for our model, and 54% for the levered-NDX strategy. In con-
trast, the later vintages (2000-2018) show a pronounced divergence: Cambridge Associates and Pregin
both average around 13-14%, whereas the model and levered-NDX benchmarks average approximately
23-25%. Thus, these VC vintages have substantially underperformed the benchmarks.

Despite this shift in mean returns, the standard deviations of the actual and model-based vintage
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Table 7: VC Vintage Returns
(A) Summary Stats

Sample Statistic Model Levered NDX VC (Preqin) VC(CA) VC (CA since 1981)
All vintages Mean IRR (%) 31.72 33.34 26.38 25.71 22.99
Standard deviation (%)  26.38 25.81 28.71 27.96 24.22
Pre-2000 vintages ~ Mean IRR (%) 53.46 53.97 57.80 54.01 32.19
Standard deviation (%)  39.10 38.44 35.77 38.27 31.19
Post-2000 vintages  Mean IRR (%) 22.57 24.66 13.15 13.79 13.79
Standard deviation (%)  10.60 10.89 8.37 7.35 7.35

(B) Levered NDX vs. Venture Capital

IRR Model IRR VC (Preqin) IRR VC (CA)
) 2 ®) 4) ©)
IRR Levered NDX 1.021%** 1.056%**  0.980%***
(0.0103) (0.0993)  (0.113)
IRR Model 1.042%** 0.963***
(0.0891) (0.105)
Constant —2.337%**  —6.667 —8.818* —6.980 —4.848
(0.491) (4.203) (4.662) (5.050)  (4.488)
R? 0.998 0.916 0.900 0.818 0.826
N 27 27 27 27 27

Note: This table compares the vintage-level internal rate of returns (IRRs) of the model, the levered NDX strategy, and Venture
Capital funds as reported by Preqin and Cambridge Associates (CA).

IRRs remain very similar across both sub-periods, underscoring that our replication captures the disper-
sion of IRRs across vintages. Having shown that the model and levered-NDX strategy match vintage-

level VC performance, we now turn to market-level VC indices to evaluate aggregate returns and risk.

5.3 Index Returns

A widely used approach to assess VC performance is through market-level venture capital indices, such
as the Cambridge Associates VC Index. We use the levered-NDX replication strategy to construct a
comparable aggregate VC return series.

We obtain the quarterly cash flows of contributions and distributions from Cambridge Associates
(1981-2024). Mirroring the vintage-level replication, each observed contribution is invested into a lev-
ered NDX position at 2.2x for the first two years, at 1.6x for the next two years, and finally at 1.4x for the
subsequent four years. Each position is exited as cash flows are distributed to LPs or after a maximum
of 6 years. As before, positions established earlier are exited first (first-in first-out). For each quarter
t, we thus update the replicating strategy’s market value by (i) subtracting any distributions paid out,
(ii) adding any new contributions, and (iii) marking the remaining position to market using the realized

return on the levered-NDX portfolio. From this series, we compute both the overall IRR (from the full
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cash flow time series) and periodic net returns (percentage change in portfolio value with the difference
between distributions and contributions treated as dividends), which enable standard time-series risk
analysis.

Table [8| summarizes the results for the full sample (1981-2024) and two sub-periods (1981-2003,
2004-2024). In the early sample, the levered-NDX replicator achieves an IRR of 23%, compared to 19%
for the Cambridge Associates VC Index. In the later sample, the levered-NDX'’s IRR of 19% exceeds the
CA Index’s 12%, mirroring the vintage-level divergence documented in Section[5.2.2] The levered-NDX
strategy exhibits significantly deeper drawdowns than the Cambridge Index: -96% vs. —=70% during the
tech-bubble collapse, and —66% vs. —24% during the 2008 crisisF_ZI

We also estimate standard factor regressions of quarterly excess returns on market excess returns
(against the Nasdag-100 and S&P). For the levered-NDX replicator, the estimated Nasdag-100 beta is
1.74 (t-stat 15.2) and the S&P 500 beta is 2.43 (t-stat 18.7). Both are slightly above the model’s average
all-stage beta since there are only early-stage ventures active at the start of our exercise.. In contrast,
regressions of the Cambridge VC Index include seven lags of the market return to account for valuation
staleness and recover lower systematic betas (NDX beta 1.48; SPX beta 1.77). These findings likely
reflect both (i) the well-identified systematic risk in our model-based VC replicating portfolio, and (ii)

the potential impact of private-fund smoothing, which can understate market-driven volatility.

12These differences may reflect return smoothing arising from the staleness of reported startup valuations. We provide a
discussion and analysis of smoothing mechanisms and their effects in Section
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Table 8: VC Index Risk and Return

Sample Stat Levered NDX CA VC Index
1981Q1-2024Q2 IRR (%) 22.14 17.27
Geometric average (%) 16.34 13.26
Arithmetic average (%) 25.65 14.14
Standard deviation (%) 45.22 19.13
Max drawdown (%) -95.79 -69.98
Nadag-100 Alpha (%) 0.00 (0.92) -8.19 (2.67)
Nadaqg-100 Beta 1.74 (0.03) 1.48 (0.26)
Nadag-100 R-squared 0.99 0.61
S&P 500 Alpha (%) 0.69 (3.61) -4.99 (2.27)
S&P 500 Beta 2.43 (0.14) 1.77 (0.29)
S&P 500 R-squared 0.76 0.32
19810Q1-2003Q4 IRR (%) 22.90 19.04
Geometric average (%) 12.97 14.19
Arithmetic average (%) 26.86 15.79
Standard deviation (%) 54.04 24.18
Max drawdown (%) -95.79 -69.98
2004Q1-2024Q2  IRR (%) 18.76 12.20
Geometric average (%) 20.19 12.23
Arithmetic average (%) 2431 12.28
Standard deviation (%) 33.12 11.07
Max drawdown (%) -66.39 -24.01

Note: This table reports the risk and return characteristics of the Cambridge Associates VC Index and our levered-NDX market-
index replicator. We regress each index’s quarterly excess returns on market excess returns—using only the contemporaneous
return for the levered-NDX replicator and the contemporaneous return plus seven lags for the CA VC Index. Robust t-statistics
are in parentheses.

6 Discussion

6.1 Key Lessons from the Structural Model

Our two-stage compound-option framework, calibrated solely to the unconditional probabilities of lig-
uidation and IPO, succeeds in replicating both the time-series patterns of conditional exit rates and the
vintage-level IRRs observed in the data. The model explains approximately 39% of the variation in quar-
terly IPO rates and 82% to 92% of the variation in vintage returns. This finding implies that the essential
economics of VC-backed startups are captured by just two ingredients: the optionality embedded in
staged financing, and exposure to systematic Nasdaq-100 index risk. By abstracting from dilution ef-
fects beyond fair-value common equity issuances, from matching between startups and VC investors

(Serensen, |2007), and from strategic timing discretion—which our IRR analysis captures via cashflow
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matching—we isolate the pure value of the right to abandon and the market-beta channel.

Moreover, we show that a simple levered-NDX futures strategy—scaled to the model-implied betas
to the Nasdag-100 at each stage—closely approximates the model’s conditional payoffs across a plau-
sible range of idiosyncratic volatilities, offering a low-cost and transparent implementation of a VC

replicating strategy.

6.2 VC’s Systematic Risk Exposure: Nasdaq-100 vs. S&P 500

Our analysis implies that the Nasdag-100 index captures the relevant systematic market exposure of VC
investments better than broader indices like the S&P 500. The underlying asset in our startup model
is unobserved unless it becomes a viable publicly-traded firm. [Ritter| (1991) notes that most IPOs list
on Nasdaq. This is also true for VC-backed startups: over 85% of VC-backed IPOs occur on Nasdaq
(see Table [2). Consistent with this, we find that four-year Nasdag-100 returns explain roughly 47% of
the variation in quarterly IPO rates, compared to just 22% explained by the S&P 500 returns. We also
regress quarterly Cambridge Associates VC Index returns on quarterly market returns (and 8 lags) and
find an R? of 0.61 when using the Nasdag-100 versus only 0.32 when using the S&P 500.

Nasdag-100 exposure is distinct from broader US equity market exposure in this sample. First,
in the post-2008 period, 2009-2024, the Nasdaqg-100 exhibits positive risk-adjusted returns against the
broader stock market (see Appendix Table[TA2). This relative outperformance, sustained for nearly two
decades, has meaningful consequences for the inferences from benchmarking exercises. Second, and
more dramatically, the firms listed on the Nasdaqg-100 exhibit convex valuations relative to average val-
uations. Figure[9|plots the value-weighted revenue multiples (enterprise value divided by revenues) for
Nasdag-listed firms against those for the broader U.S. stock market. The relationship is strongly positive
and displays notable convexity, particularly pronounced during the tech boom period (1997-2001). This
distinct nonlinearity underscores that Nasdaq exposure is fundamentally different from general mar-
ket exposure, especially during market expansions characterized by rapid growth in technology and
high-valuation sectors. Given that VC-backed startups predominantly list on Nasdaq, properly identi-
tying and accounting for the Nasdaqg-specific systematic risk exposure is essential when evaluating the
investment performance and associated risks of VC investments.

Yet, most VC benchmarking studies nevertheless use the S&P 500 or a broad equity factor (such as
the CRSP value-weighted returns) as the market proxy, potentially understating both the amount and
nature of the systematic risk that LPs bear. Table 9| summarizes beta estimates reported in the VC risk
and performance literature. Our stage-specific beta estimates provide novel insights into the evolution

of market risk exposure through a startup’s lifecycle, reflecting that the leverage on the underlying
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Figure 9: Stock Market Valuation: Nasdaq-100 vs. S&P 500
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This figures plots the monthly revenue multiples of stocks in the Nasdaq-100 and the US value-weight stock market over the
period 1980-2024. The sub-period ranging from 1997-2001 is defined as the "tech boom" and is displayed as green "x’, while all
other time periods are displayed as blue "0’. The fitted values from a regression of Nasdaq-100 multiples on market multiples
including the squared market multiple are plotted in black.

claim decreases as the startup survives the early stages, confirming the theoretical hypothesis of Berk,
Green, and Naik|(2004). The decreasing beta pattern is consistent with the estimates of Cochrane (2005),
although our stage-level estimates seem quantitatively more realistic and contrast with the decreasing
beta pattern of Korteweg and Sorensen| (2010).

While few papers have estimated the life cycle beta of startups, many studies provide a general
(“all-stage”) beta estimate for VC funds. A key point to emphasize is that the systematic risk of VC
investments in our study is derived from the systematic risk of newly-listed firms, which we estimate to
be Banpx = 1.4 and B4 spx = 1.8. If one accepts the option-like characteristic of venture capital, then
the underlying asset betas serve as lower bounds for the venture capital beta, as the option-like structure
inherently amplifies leverage of earlier-stage holdings. Under our calibration, the all-stage VC betas are

Bvenpx = 1.7 and Byc spx = 2.3, reflecting the leverage inherent in staged financing.
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Table 9: Market Betas of VC Investments

Stage 1 (Early) Stage 2 (Late) Mezzanine/IPO  All-stage Beta

NDX Beta  This paper 2.2 1.6 1.4 1.7
SPXBeta  Thispaper 29 21 8 23

Cochrane|(2005) 1.1-09 0.7 0.5 1.9
Korteweg and Sorensen |(2010) 0.6-2.7 2.5 5.6 2.8
Gompers and Lerner|(1997) 1.1-1.4
Peng|(2001) 1.3-2.4
Woodward |(2009) 2.2
Driessen, Lin, and Phalippou|(2012) 2.7
Ewens, Jones, and Rhodes-Kropf|(2013) 1.2
Ang, Chen, Goetzmann, and Phalippou|(2018) 1.8
Brown, Ghysels, and Gredil|(2023) 1.4-1.6
Korteweg and Nagel |(2024) 24

SPX Beta  Asset managers & Consultants 14

Note: This tables compares our market betas to other estimates in the literature.

6.3 Has Startup Risk Declined Post-2000?

Since the “tech boom”, venture-capital returns have underperformed relative to the returns of our
compound-option benchmark and the returns of the levered NDX strategy. Vintage IRR data from Pre-
gin and Cambridge Associates show that average VC vintage returns for cohorts between 2000 and 2016
lie in the 13-14% range, whereas our model and leveraged NDX strategy generates IRRs of roughly
23-25% for those same vintages (see Table @ One possible interpretation is that the systematic risk pro-
file of startups has come down over the past two decades, so that a model calibrated on unconditional
exit probabilities over the full sample overstates the required risk premium over the last two decades.
Another observation that is challenging to interpret arises from the behavior of the Cambridge Index
during market downturns. As shown in Figure[10} the index exhibits only three meaningful drawdowns
over the past four decades: during the dot-com bust (2000-2002), the global financial crisis (2008-2009),
and the recent venture correction beginning in 2022. In contrast, our well-marked replicating portfolio
experiences substantial drawdowns in those three episodes as well as in numerous others, suggesting a
more continuous and higher sensitivity to underlying risk factors. The muted decline in the Cambridge
Index during the 2008 financial crisis is especially notable. While the levered-NDX replicating strat-
egy declined by approximately 66%, the Cambridge-reported drawdown in VC returns was limited to
around 24%. In one interpretation, this could signal that venture portfolios were less exposed to system-

atic risk than high-beta public tech equities. However, it may also reflect artificial smoothing in reported
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returns[1]

Smoothing might arise because the CA index is built off quarterly NAVs that incorporate stale or
model-based valuations, rather than marking positions to market in real time. In benign environments,
those NAVs tend to drift steadily upward as long as no valuation events (such as new funding rounds
or exits) require reassessment. Meaningful declines only materialize when firms undergo down-round
financings, impaired exits, or liquidations—at which point the drawdowns appear abruptly, often with
a lag. Consistent with the smoothing interpretation, the CA index exhibits highly persistent return
dynamics. Quarterly returns display large and statistically significant autocorrelations at the first three
lags—approximately 0.6, 0.5, and 0.3, respectively—suggesting mechanically smoothed performance
rather than timely price discovery. By contrast, our replicating portfolio shows no serial correlation,

consistent with immediate valuation adjustments based on observable market signals.

Figure 10: Venture Capital Drawdowns
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Note: This figures plots the quarterly drawdowns (through to peak levels of total return indices) for the Cambridge Associates
Venture Capital Index (black) and the the levered Nasdaq-100 replicating portfolio (blue) over the period 1982-2024.

This return behavior underscores a fundamental challenge in private-firm risk assessment: with-
out continuous market pricing, investors must infer both systematic and idiosyncratic risk from sparse,
event-driven updates. Unlike public equities—whose daily valuations reflect the aggregated forward-

looking views of market participants—venture-backed startups are effectively “invisible” between fi-

13 A large body of literature documents return smoothing in hedge funds and private equity due to illiquidity and managerial
discretion in NAV reporting. For hedge funds, see |Asness, Krail, and Liew]| (2001); |Getmansky, Lo, and Makarov| (2004);
Bollen and Pool| (2008); Bollen and Pool (2009); |(Cassar and Gerakos| (2011); and |Cao, Chen, Liang, and Lo|(2013). Jurek and
Stafford|(2015) show that smoothing in just two crisis months can obscure downside risk exposure in aggregate hedge fund
indices. For private equity, see Jenkinson, Sousa, and Stucke (2019); Barber and Yasuda| (2017); (Chakraborty and Ewens
(2018); Brown, Gredil, and Kaplan| (2019); and |Stafford| (2022).
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nancing events. Consequently, our compound-option framework provides one of the few transparent
and economically grounded methods for revealing latent risk exposures, by linking observed exit dy-
namics and payoff structures to an underlying pricing model of risk.

Crucially, however, our model’s calibration assumes that the startup underlying asset risk param-
eters remain constant over time, which translates into stage-specific betas being essentially stable over
time. There are two empirical patterns that support the notion of constant underlying risk: First, the
sensitivity of IPO exit rates to recent Nasdaq-100 returns is nearly identical before and after 2000. A
regression of quarterly IPO probability on trailing 4-year market returns yields coefficients of 0.05 in
the pre-2000 sample and 0.06 in the post-2000 sample (see Table [6). In both eras, “good-outcome” exits
remain highly exposed to market performance. Second, post-IPO market betas also show no significant
difference between the two subsamples. The average beta of firms going public between 1986 and 1999
is 1.43 and of those going public after 1999 is 1.39, indicating that conditional on an IPO exit, the asset’s
systematic risk has not drifted.

However, one change in exit patterns clearly stands out. High-value acquisitions now account for
a much larger share of “good outcomes”. Over our main 1992-2021 sample, 44% of successful exits are
high-value M&A events; that fraction was just 22% in the early period and 53% after 2000 (see Table
M). This rise in high-value acquisition exits raises an important nuance. When startups are folded into
large acquirers—as is often the case with technology buyouts—their underlying assets become part of
publicly traded corporations that can exhibit lower systematic risk than standalone recent IPO firms.

We gauge the magnitude of this effect as follows. First, we identify the ten largest acquirers of VC-
backed startups by deal count. We then estimate each acquirer’s Nasdaq-100 beta and total volatility,
as shown in Table Next, we assume that startups are a levered claim on an underlying that is a
50/50 mixture of a representative standalone firm (with a beta of 1.4 and a total volatility of 0.90) and a
representative acquirer (with a beta of 0.97 and a total volatility of 0.39). After recalibrating our model,
the computed early-stage beta is 2.5 and the late-stage beta is 1.4. Thus, these beta estimates do not
suggest that the systematic risk of VC has declined.

These analyses demonstrate that—even with a secular surge in high-value M&A exits—the model-
implied systematic risk of VC-backed startups has remained remarkably stable. Taken together, the
results reinforce the interpretation that VC returns since the tech bubble reflect not a structural reduction

in startup risk, but rather underperformance relative to a transparent, risk-matched benchmark.
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Table 10: Beta and Volatility of 10 Most Frequent Startup Acquirers

Acquirer Name  Nasdaq-100 Beta  Volatility

Boston Scientific 0.50 0.36
Broadcom 1.42 0.53
Dell 0.85 0.41
Facebook 1.08 0.37
Google 1.19 0.30
IBM 0.69 0.26
Microsoft 0.84 0.31
Oracle 0.71 0.38
Salesforce 1.26 0.43
Yahoo 1.11 0.51
Average 0.97 0.39

Note: This table provides beta and volatility estimates from 2000 to 2021 for the ten companies that acquired the largest number
of VC-backed startups during the same period.

7 Conclusion

This paper develops and evaluates a parsimonious structural model that combines compound-option
staging with CAPM-style systematic risk to provide a unified framework for understanding startup
exits, payoff skewness, and VC portfolio returns. With only two calibration targets—unconditional
liquidation and IPO probabilities—the model successfully replicates both (i) the time-series patterns in
IPO activity and (ii) vintage-level VC returns, explaining 39% of the variation in quarterly IPO rates and
92% of the variation in vintage returns.

The model highlights the systematic risk exposure inherent in VC investing, particularly exposure
to a tech-oriented equity index such as the Nasdaqg-100. First, it links the well-documented “hot” and
“cold” IPO cycles to underlying equity market conditions. Second, staged financing implies that star-
tups can be viewed as levered claims on an underlying asset that—when successful—eventually lists on
the public market, necessitating betas that exceed those of newly listed firms. Third, our results chal-
lenge the common practice of benchmarking VC performance against broad equity indices, given that
most successful exits occur in technology-focused markets like the Nasdag-100.

Most strikingly, our analysis implies that a diversified VC portfolio behaves similarly to a lever-
aged position in the Nasdag-100. As such, a levered Nasdag-100 investment offers a transparent, low-
cost replicating strategy and a useful performance benchmark for limited partners. This replicator has
meaningfully outperformed the average VC fund over the past two decades.

Future research could endogenize multi-stage investment timing, incorporate granular deal-level
acquisition outcomes, and model dilution and GP incentive structures. These extensions would add
nuance, but are unlikely to overturn the core insight: VC returns are largely explained by market-driven

optionality and concentrated Nasdaq exposure.
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A Time-Series of Startup Exits

Figure IA1: Time-series of Successful Startup Exits
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Note: This figure shows the time-series of quarterly startup exits. “VX” denotes the VentureXpert data.



B VC Returns: Vintage By Vintage

Table IA1: Vintage Returns

Vintage Model Levered NDX VC (Preqin) VC (CA)

2018 34.5 35.9 24.0 18.5
2017 31.8 33.5 21.7 20.5
2016 34.5 35.9 28.3 17.9
2015 29.1 31.5 14.4 16.1
2014 28.4 31.3 19.1 20.6
2013 29.3 32.4 19.7 19.2
2012 29.1 31.9 14.8 20.9
2011 30.4 33.3 22.8 229
2010 29.1 31.9 13.9 241
2009 30.1 32.6 15.1 14.1
2008 29.6 31.9 13.1 13.3
2007 22.8 24.5 16.0 14.3
2006 18.5 20.1 4.8 9.1
2005 14.6 16.3 7.7 9.8
2004 10.1 11.5 5.7 6.9
2003 9.3 11.3 3.5 9.0
2002 94 11.2 1.3 1.1
2001 6.9 8.6 44 3.6
2000 14 2.8 -0.5 0.0
1999 -16.3 -12.4 -7.3 -0.8
1998 14.2 124 34.9 11.9
1997 87.7 87.3 88.9 92.6
1996 62.0 62.1 62.4 101.4
1995 99.9 100.7 105.4 88.5
1994 80.3 80.4 81.4 59.3
1993 58.4 58.5 58.4 46.7
1992 41.6 42.7 38.3 32.5
1991 . . . 27.9
1990 . . . 33.1
1989 . . . 19.2
1988 . . . 18.9
1987 . . . 18.3
1986 . . . 14.6
1985 . . . 12.9
1984 . . . 8.6
1983 . . . 10.2
1982 . . . 74
1981 . . . 8.5

Note: This table reports the vintage internal rate of returns (IRRs) of the model, the levered NDX strategy, and Venture Capital
vintages. The IRRs are reported in %.



C Stock Market Returns

Table IA2: Stock Market Returns

Sample Stat S&P 500 (SPX) Nasdag-100 (NDX)
1981Q1-2024Q2  Geometric average (%) 11.61 13.68
Arithmetic average (%) 12.45 16.33
Standard deviation (%) 16.16 25.67
Max drawdown (%) -45.76 -81.04
1981Q1-2003Q4  Geometric average (%) 12.88 12.97
Arithmetic average (%) 13.66 17.01
Standard deviation (%) 16.54 30.42
Max drawdown (%) -43.75 -81.04
2004Q1-2024QQ2  Geometric average (%) 10.20 14.48
Arithmetic average (%) 11.10 15.57
Standard deviation (%) 15.80 19.16
Max drawdown (%) -45.76 -41.70

Note: This table reports the return characteristics of stock market indices.

D Conditional Continuation Probability

To derive the conditional continuation cutoff a_ (M, ), start from the conditional asset process in equa-
tion (13):
~ _Ll2 .
A1 = Ap- M’f"‘ . e(yf 2‘7€>T1+Ue\/7712;,e.

Taking logs and rearranging the continuation condition A;; > Aj, we obtain:

7S — [log(AO/AT) + ,BA log(Ml) =+ T’le]
1,€ 0_6\/?1 .

Thus, the standardized cutoff becomes:

- 10g(A0/A*) + ,BA IOg(Ml) +rr
a-(My) = 1 Tey/T1 =

yielding the conditional continuation probability:

Pr(Continuation | M;) = N (a_(My)).
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