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ABSTRACT 

Systems based on artificial intelligence (AI) increasingly support physicians in diagnostic decisions. 
Compared to rule-based systems, however, these systems are less transparent and their errors less 
predictable. Much research currently aims to improve AI technologies and debates their societal 
implications. Surprisingly little effort is spent on understanding the cognitive challenges of decision 
augmentation with AI-based systems although these systems make it more difficult for decision makers to 
evaluate the correctness of system advice and to decide whether to reject or accept it. As little is known 
about the cognitive mechanisms that underlie such evaluations, we take an inductive approach to understand 
how AI advice influences physicians’ decision making process. We conducted experiments with a total of 
68 novice and 12 experienced physicians who diagnosed patient cases with an AI-based system that 
provided both correct and incorrect advice. Based on qualitative data from think-aloud protocols, interviews, 
and questionnaires, we elicit five decision making patterns and develop a process model of medical 
diagnosis decision augmentation with AI advice. We show that physicians use distinct metacognitions to 
monitor and control their reasoning while assessing AI advice. These metacognitions determine whether 
physicians are able to reap the full benefits of AI or not. Specifically, wrong diagnostic decisions often 
result from shortcomings in utilizing metacognitions related to decision makers’ own reasoning (self-
monitoring) and metacognitions related to the AI-based system (system-monitoring). As a result, physicians 
fall for decisions based on beliefs rather than actual data or engage in unsuitably superficial information 
search. Our findings provide a first perspective on the metacognitive mechanisms that decision makers use 
to evaluate system advice. Overall, our study sheds light on an overlooked facet of decision augmentation 
with AI, namely the crucial role of human actors in compensating for technological errors.  
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Cognition, Advice Taking 
  



2 

INTRODUCTION 

The rapid development of technologies based on artificial intelligence1 (AI)  has shattered the 

notion of physicians as the sole decision makers in clinical practice. Advances in machine learning with 

increased data availability have spawned computer aided intelligent diagnosis (CAID) systems that 

accomplish tasks that were previously regarded as uniquely human (Mayo and Leung 2018). In fact, AI-

based systems have begun to outperform expert physicians in diagnosing diseases such as diabetes, cancer, 

and stroke (e.g., Shen et al. 2019). Yet, the complexity and consequences of medical decisions make it 

unlikely that CAID systems will replace physicians in the diagnostic process (Jha and Topol 2016). Instead, 

CAID systems promise to augment physicians’ medical decisions by providing a second diagnostic opinion 

and by offering an opportunity to revise preliminary diagnostic assessments if necessary (Cheng et al. 2016). 

Thus, CAID systems should be beneficial for those physicians who are most susceptible to diagnostic errors, 

including novice physicians with limited experience, physicians with different areas of specialization, and 

those working on complex cases under high cognitive load and time pressure (Shen et al. 2019). Overall, 

the combined assessment of CAID systems and physicians should result in lower error rates than decisions 

made by physicians or CAID systems alone (Cheng et al. 2016, Mayo and Leung 2018).  

However, including AI advice in clinical practice creates new challenges. Although CAID systems 

have reached high levels of accuracy, they are not without errors. Unlike rule-based clinical decision 

support systems, AI-based systems are based on statistical data patterns rather than explicit human expertise 

(Appendix A provides a detailed comparison). Thus, distorted data can lead to errors that are unpredictable 

for both CAID system developers and physicians (Rahwan et al. 2019). For example, AI-based systems can 

                                                   

 

1 AI refers to the ability of a computer to accomplish tasks commonly associated with intelligent beings, i.e., 

intellectual processes that are characteristic for humans such as reasoning, generalizing, or learning from experience 

(Russell and Norvig 2010). 
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display racist and sexist decision schemes because of distortions in training data (Kirkpatrick 2016). At the 

same time, identifying incorrect assessments of CAID systems is inherently difficult due to their 

technological properties. For example, many CAID systems in radiology rely on deep learning algorithms 

to offer diagnostic advice based on imaging data (Jiang et al. 2017). These systems’ inference logic is 

necessarily less transparent than the logic of traditional rule-based systems. CAID systems typically provide 

solely the results of their analysis, while the reasoning remains a black box (Fazal et al. 2018). Thus, it is 

difficult, yet critical, that physicians supervise CAID systems and do not follow AI advice without scrutiny. 

Whereas much research currently focuses on how to develop more accurate and transparent AI-

based systems to counter these challenges (Rai 2020), too little effort is spent on understanding the cognitive 

challenges of decision makers that hinder successful decision augmentation with AI advice (Burton et al. 

2020). On the one hand, physicians often ignore system advice (Liberati et al. 2017) and, thus, fail to benefit 

from the second opinion that increasingly powerful CAID systems provide. On the other hand, decision 

makers often fail to detect incorrect system advice and are misled by it. In prior studies, experienced 

physicians failed to overrule incorrect system advice in between 33% and 48% of all cases when examining 

mammograms (Alberdi et al. 2004). Similarly, physicians interpreted electrocardiograms more accurately 

with the help of correct system advice but dropped far below their unsupported accuracy levels when they 

received occasionally incorrect system advice (Tsai et al. 2003). It is therefore necessary to comprehend 

and mitigate physicians’ cognitive challenges with CAID systems that can provide correct as well as 

incorrect advice. Failure to detect incorrect AI advice may otherwise result in wrong diagnoses and 

numerous medical errors (Tsai et al. 2003, Alberdi et al. 2004, Goddard et al. 2012). 

From a theoretical perspective, little is known about the cognitive mechanisms that allow decision 

makers to evaluate the correctness of system advice and decide whether to reject or accept it. In fact, most 

prior work in the Information Systems (IS) literature has been assuming that system advice is correct and 

beneficial (e.g., Davern et al. 2012, Arnott and Pervan 2014). In doing so, the literature largely neglected 

the cognitive challenges that incorrect system advice poses to decision makers and why they often fail to 

reject it (Schultze et al. 2017, Fiedler et al. 2019). Moreover, prior work provided a theoretically fragmented 
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picture of the cognitive challenges involved in augmenting decisions with system advice. On the one hand, 

prior work has suggested that decision makers need to deliberately process system advice in order to 

integrate it successfully into their decision making (e.g., Heart et al. 2011). On the other hand, prior work 

showed that decision makers often fail to do so because they apply heuristic reasoning and do not switch 

from quick, superficial assessments to deliberate, in-depth reasoning when necessary (e.g., Adomavicius et 

al. 2013). Although crucial for decision augmentation, research has not yet understood the mechanisms 

through which decision makers successfully balance deliberate, in-depth reasoning with quick, superficial 

assessments of system advice (Ferratt et al. 2018).  

We therefore turn to research in psychology which theorized that decision makers dynamically 

balance quick, heuristic reasoning and deliberate, systematic reasoning by means of metacognitions (Fiedler 

et al. 2018, 2019). Metacognitions are second-order cognitive processes that monitor and control human 

decision making (Ackerman and Thompson 2017). Throughout a decision making process, different types 

of metacognitions help decision makers to reflect on their own reasoning, to decide what information to 

consider and how to account for it. Thus, metacognitions also influence whether and how decision makers 

consider provided advice (Fiedler et al. 2019). Given that decision makers treat system advice very 

differently from human advice (Dietvorst et al. 2015, Logg et al. 2019, Longoni et al. 2019), it is still unclear 

which types of metacognitions allow decision makers to successfully include system advice in their decision 

making process. Scholars in psychology recently suggested that it is particularly important to better 

understand which metacognitions allow decision makers to cope with potentially incorrect advice (Fiedler 

et al. 2019). In order to understand successful decision augmentation with AI advice, we consequently 

examine the role of metacognitions throughout physicians’ decision making process with CAID systems. 

We aim to answer two research questions: 

1) How does diagnostic AI advice influence physicians’ decision making process? 

2) Which metacognitions do physicians use to decide whether to follow or to discard AI advice?   

FOUNDATIONS OF DECISION AUGMENTATION AND METACOGNITIONS 
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In the following, we first conceptualize the challenges of decision augmentation with CAID 

systems and then synthesize prior work that addressed the underlying decision making mechanisms. Finally, 

we outline the theoretical background of metacognitions and their role in human decision making.  

Decision augmentation of medical decisions with system advice 

We refer to decision augmentation as the process through which systems provide advice2  to 

decision makers that enhances resulting decision outcomes. Decision makers consider, evaluate, and 

balance the advice against their own assessment, and derive decisions that can be measured in terms of 

accuracy and quality. Decision augmentation with CAID systems can be conceptualized as physicians’ 

evaluation of their own diagnostic assessment against provided AI advice (see Table 1). In decisions in 

which correct AI advice confirms a physician’s correct assessment (Confirmation I), physicians are 

reinforced in their assessment. Thus, they are likely to retain their initial assessment. Similarly, physicians 

and CAID systems can both come to an incorrect assessment (Confirmation II) which likely results in 

medical errors. If correct AI advice conflicts with a physician’s incorrect assessment (Disconfirmation I), 

successful decision augmentation would require that physicians change their assessment and accept the AI 

advice. By contrast, if incorrect AI advice conflicts with a physician’s correct assessment (Disconfirmation 

II), successful decision augmentation would require that they retain their initial assessment and discard the 

advice. Consequently, successful decision augmentation requires different behavioral responses from 

physicians depending on the correctness of the AI advice they receive. Recognizing and executing the 

desirable behaviors poses, however, significant cognitive challenges. 

Table 1. Conceptualizing decision augmentation of medical decisions 

 Physician’s initial assessment 
Correct  Incorrect  

CAID 
system Correct 

Confirmation I: correct assessment is 
reinforced 

Disconfirmation I: correct system advice 
Desirable behavior: change own assessment 
and accept AI advice 

                                                   

 

2  In analogy with human advice, we define AI advice (Bonaccio and Dalal 2006) as a recommendation or 

suggestion by an AI-based system to a decision maker for a specific decision task.  
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advice 
 Incorrect 

Disconfirmation II: incorrect system advice  
Desirable behavior: retain own assessment 
and discard AI advice 

Confirmation II: worst-case scenario as 
decision makers do not detect problem 

Prior work on cognitive challenges of decision augmentation with system advice 

Our study is informed by three lines of research (Table 2) which conceptualize cognitive challenges 

in decision augmentation as revolving around heuristic or systematic reasoning processes. Systematic 

reasoning refers to the detailed, controlled, and deliberate cognitive processing of system advice, which is 

relatively slow and effortful (Evans and Stanovich 2013, Ferratt et al. 2018). Heuristic reasoning refers to 

mental shortcuts that constitute quick and automatic cognitive responses to a trigger without effortful 

processing of details (Tversky and Kahneman 1974, Kahneman 2011). Heuristic reasoning, thus, provides 

a fast default response to utilize or not utilize system advice (cf. Ferratt et al. 2018). 

A first, traditional IS research stream has intensively focused on understanding and stimulating the 

utilization of system advice. This line of work has investigated challenges of Confirmation I and 

Disconfirmation I and assumed that system advice is correct and beneficial. It demonstrates many benefits 

of system advice including improved adherence to medical guidelines, decreased medical errors, and 

increased medical decision quality (Jaspers et al. 2011). From a theoretical point of view, this research 

stream holds that the success of decision augmentation is driven by how deeply decision makers integrate 

system advice into their decision making. They need to engage in systematic reasoning to reflect on the 

advice content and its quality (Xiao and Benbasat 2007, Heart et al. 2011, Arnott and Pervan 2014). This 

research stream also aims at facilitating advice utilization by designing systems that foster decision makers’ 

systematic reasoning, for example by providing explanations (Arnold et al. 2006). In doing so, this research 

stream has elaborated primarily on how systematic reasoning supports decision augmentation but largely 

ignored cognitive decision processes that hinder optimal utilization of system advice. 

Table 2. Overview of three literature streams that address challenges of decision augmentation 

Research 
stream 

Advice 
source 

Augmentation 
challenge and 
assumptions  

Identified cognitive 
challenges  

Underlying 
reasoning 
mode 

Exemplary paper 



7 

Stream 1: 
Decision 
augmentation 
with correct 
system advice 

Decision 
support & 
recom-
mender 
systems   

Confirmation I & 
Disconfirmation I –  
Advice is correct 
and beneficial 

Decision makers 
insufficiently 
integrate system 
advice into their 
decision making 

Systematic 
reasoning 
necessary to 
integrate system 
advice into their 
decision making  

Arnold et al. 2006, Nissen 
and Segupta 2006, Xiao and 
Benbasat 2007, Tan, Teo 
and Benbasat 2010, Heart et 
al. 2011, Davern et al. 2012, 
Arnott and Pervan 2014 

Stream 2: 
Human biases 
in evaluating 
system advice   

Algorithm 
advice 

Disconfirmation I –  
Advice is correct 
and beneficial but 
imperfect 

Decision makers 
have inherent biases 
against or towards 
algorithms 

Heuristic 
reasoning 
hinders optimal 
utilization of 
advice 
 

Dietvorst et al. 2015, 2018, 
Logg et al. 2019, Longoni 
2019 

Decision 
support & 
recom-
mender 
systems   

Confirmation II –  
Advice can be 
deceptive 

Decision makers 
cannot compensate 
for biasing 
influence of the 
system 

Xiao and Benbasat 2011, 
2015, 2018, Adomavicius et 
al. 2013, Elkins et al. 2013 

Stream 3: 
Dealing with 
incorrect 
advice  

Performa-
tive 
systems 

Confirmation II –  
Advice can be 
incorrect 

Decision makers 
lose vigilance in 
information 
processing  

Decision 
makers fail to 
dynamically 
switch from 
heuristic to 
systematic 
reasoning 

Tsai et al. 2003, 
Parasuraman and Manzey 
2010, Goddard et al. 2012, 
Endsley 2017 

Human 
advisor 

Disconfirmation II –  
Advice can be 
incorrect 

Decision makers are 
unable to engage in 
systematic 
reasoning  

Schultze et al. 2017, Fiedler 
et al. 2019 

Notes. These categories describe different research streams and are not mutually exclusive. Algorithms are considered to be the 
outcome of statistical systems which are often more accurate than human decision makers (see Dietvorst et al. 2015). 
Recommender systems provide recommendations, often to consumers about preferences. Performative systems are highly 
automated systems in which decision makers monitor system performance, e.g., flight assistance systems (Nissen and Segupta 
2006); they are mainly considered by human factors literature. 

A second research stream in IS has suggested that distinct heuristic processes of human decision 

makers prevent adequate advice utilization (Xiao and Benbasat 2011, 2015, Dietvorst et al. 2015, 2018). 

For instance, decision makers who see themselves as experts have a tendency to be overly confident in their 

own assessments and often reject system advice (Elkins et al. 2013). Moreover, many decision makers 

unduly reject system advice if they realize that a system is imperfect (Dietvorst et al. 2015, 2018). 

Conversely, inexperienced decision makers often overestimate the correctness of systems compared to 

human advisors (Logg et al. 2019). Furthermore, system advice can anchor decision makers (Adomavicius 

et al. 2013) so that they are misled or deceived by unbeneficial system advice (Xiao and Benbasat 2011, 

2015, 2018). From a theoretical point of view, this line of work suggests that heuristic processes hinder a 

sophisticated verification and utilization of system advice. On the one hand, inherent biases against systems 

are argued to explain why individuals fail to accept beneficial advice (Disconfirmation I). On the other 

hand, inherent biases toward systems are argued to explain why decision makers accept unbeneficial advice 

when it does not completely contradict their own assessment (Confirmation II). Although this line of work 

elaborated heuristic processes as reasons of inadequate advice utilization and proposed design features to 
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overcome single heuristic biases (e.g., additional instructions, explanations, and warning messages), it did 

not consider which deliberate cognitive processes actually help overcome such biases.  

A final research stream addresses the challenges of Confirmation II and Disconfirmation II from a 

process perspective but has received little attention in the IS literature. This stream suggests that incorrect 

system advice is extremely problematic because decision makers often fail to detect occasional errors of 

highly accurate systems (Parasuraman and Manzey 2010, Goddard et al. 2012, Endsley 2017). In fact, 

decision makers are strongly influenced by incorrect advice, even if they know the advice is unreasonable 

(Schultze et al. 2017, Fiedler et al. 2019). From a theoretical point of view, these effects are explained as 

decision makers’ failure to switch from heuristic reasoning to systematic reasoning when necessary. As 

such, decision makers lose vigilance for erroneous system advice if their systems usually perform well 

(Parasuraman and Manzey 2010, Endsley 2017). They fail to spot occasional errors because they rely 

increasingly on superficial heuristic assessments with insufficient systematic reasoning. Yet, the 

mechanisms through which decision makers balance their heuristic and systematic reasoning to process 

system advice have not been elaborated. 

Overall, there are two important gaps in prior research. First, most prior work, especially in IS, has 

assumed that provided system advice is correct and beneficial. In doing so, it has largely neglected the 

cognitive challenges entailed in incorrect system advice, particularly the challenges of Disconfirmation II. 

Since even accurate AI-based systems might occasionally provide incorrect advice due to unnoticed 

distortions in training data, we need to understand the cognitive processes that enable decision makers to 

reject incorrect system advice while utilizing correct advice. Second, prior research has provided a 

theoretically fragmented picture of the cognitive challenges of decision augmentation with system advice. 

On the one hand, it has suggested that decision makers need systematic reasoning to benefit from system 

advice. On the other hand, it has demonstrated that decision makers are often unable to engage in systematic 

reasoning as they fail to switch from heuristic to systematic reasoning. Little attention, however, has been 

given to the underlying mechanisms that allow decision makers to balance quick heuristic assessments with 

effortful systematic assessments of system advice if necessary (Ferratt et al. 2018). In fact, research on 
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human advice recently suggested that elaborating these mechanisms is paramount for understanding how 

individuals can cope with the cognitive challenges posed by potentially incorrect advice (Fiedler et al. 2018, 

2019). In line with these ideas, we deem it necessary for IS research to take a step back and examine more 

rigorously how decision makers control their reasoning processes to benefit from decision augmentation 

with AI advice. 

Naturalistic decision making and metacognitions 

We draw on a theoretical framework that does not focus on heuristic and systematic processes in 

isolation but scrutinizes the more general cognitive processes that allow decision makers to monitor and 

control their reasoning in complex decision processes. Naturalistic decision making (NDM) (Klein 2008, 

Klein 2015, see Table 4 on p. 15 for definitions of core concepts) asserts that decision makers first build an 

initial mental model (hereafter referred to as frame) which is based on an intuitive assessment of the 

decision task (Klein 2008; Klein 2015). Once they accumulate further cues from available data, decision 

makers are likely to retain their initial assessment if the data confirm their frame. If the data disconfirm 

their frame, decision makers engage in a sensemaking process with more effortful systematic reasoning to 

decide whether they should preserve or change their frame (Kahneman and Klein 2009). In particular, 

“[w]hen there are cues that an intuitive judgment could be wrong, [the decision maker replaces] intuition 

by careful reasoning” (Kahneman and Klein 2009, p. 519).  

Balancing intuitive, heuristic and deliberate, in-depth reasoning activities is achieved through 

metacognitions (Ackerman and Thompson 2017). Decision makers use these metacognitions to monitor 

and control their own decision making process. Metacognitive monitoring captures the dynamic state of 

confidence regarding how well a decision is being performed (Ackerman and Thompson 2017). If decision 

makers are confident, they will act and are less likely to seek further information or additional cues like 

system advice (for an overview see Bonaccio and Dalal 2006). If they are not confident, they will hesitate, 

gather more information, change tracks, or look for other cues like system advice (Hausmann and Läge 

2008, Wang and Du 2018), which makes them more likely to follow conflicting advice. Thus, metacognitive 

monitoring constitutes a sensing activity that allows decision makers to regulate the degree of systematic 
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reasoning and the amount of information sought (Ackerman 2014, Ackerman and Thompson 2017). In 

contrast, metacognitive control encompasses deliberate action to initiate, terminate, or change the input 

factors for decision making. By means of metacognitive control, decision makers influence the ongoing 

decision making process. The most prominent control functions are searching for additional information 

and ceasing the search for information, i.e., making a decision without further elaboration (Ackerman and 

Thompson 2017). Fiedler and colleagues (2018) argue that if decision makers fail to exert metacognitive 

control, they evaluate data in a biased way and often base their assessments on irrelevant information. A 

lack of metacognitive control leads to decision makers’ inability to discard useless advice even if they 

recognize its limited usefulness (Fiedler et al. 2019). Overall, similar processes are likely to occur when 

physicians face incorrect AI advice.  

In sum, metacognitions allow decision makers to monitor and control their reasoning activities 

throughout the decision making process. Notably, metacognitions have rarely been studied in the context 

of complex decisions with potentially incorrect advice (Fiedler et al. 2019), let alone system advice. Thus, 

it is currently unclear which types of metacognitions decision makers use to evaluate AI advice and how 

metacognitions lead decision makers to follow or reject the AI advice.  

METHOD 

To research how physicians apply metacognitions in their decision making process with AI advice, 

we chose an inductive approach in an experimental setting in which we manipulated the correctness of 

advice provided by a CAID system. 

Research Design 

We conducted a first controlled experiment with 47 novice physicians who had to make diagnostic 

decisions for patient cases based on radiological data and advice provided by a CAID system. For 

triangulation, we (1) compared our findings from the first experiment with a sample of 12 experienced 

radiologists, and (2) changed our experimental design and examined a second group of 21 novice physicians. 

The participants diagnosed patient cases with the support of a CAID system that provided randomized 

correct and incorrect mock-up AI advice. We collected qualitative data using think-aloud protocols, 
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interviews, and questionnaires to capture the participants’ decision making processes. Through our data 

analysis, we elicited distinct decision making patterns that we used to develop a process model of medical 

diagnosis decision augmentation with AI advice.  

The CAID system 

We developed a CAID system that predicts pulmonary function values from a computed 

tomography (CT) scan with machine learning for diagnosing chronic obstructive pulmonary disease (COPD) 

(blinded). COPD is a chronic lung disease and constitutes the third leading cause of death worldwide (World 

Health Organization 2018). Current medical practice uses primarily pulmonary function tests to diagnose 

COPD. Using pulmonary function values predicted from CT image data is a novel approach that has the 

potential to help detect COPD in earlier stages (blinded). The CAID system included binary mock-up AI 

advice that read: “Based on the analysis of the above data, the AI recommends: COPD / NO COPD” (see 

Figure 1). In a short introductory video before the experiment, we explained to the participants how the 

CAID system works and how the predicted data correspond with the CT image. None of the participants 

questioned whether the mock-up AI advice was really based on AI methods. The introduction explicitly 

stated that the accuracy of the AI advice was 90%, which is comparable to the prevailing clinical practice 

(Jiang et al. 2017).  

 
Figure 1. Interface of the CAID system. Predicted values are system predictions derived from a CT scan and refer to lung 

volume (Vol.), relative lung volume (Rel. Vol.), mean lung density (MLD), full-width-half-max (FWHM), low attenuation 
volume (LAV), and high attenuation volume (HAV) 

Study procedure  

Predicted values

Binary mock-up AI 
adviceCT Image
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To simulate critical clinical situations, we asked participants to conduct three diagnostic decisions 

based on the available information. We loaded three actual patient cases into the CAID system—two cases 

of patients suffering from COPD and one of a healthy patient. The three patient cases were selected and 

classified before the experiment by a radiologist and a pneumologist as unambiguous cases of patients who 

clearly suffered from COPD or not. We displayed the three patient cases in randomized order. Each 

participant completed three trials. In the first trial, we only provided the CT image without predicted values 

and without AI advice. This trial served as a control trial to understand the unsupported decision making 

process. In the second and third trials, participants received the full interface (see Figure 1). Each participant 

received one trial with correct AI advice and one with incorrect AI advice in random order. The participants 

could compare the AI advice with the predicted lung values in a table and with the CT image, which both 

indicated the correct diagnosis at all times. The AI advice was provided at the same time as all other data 

to allow participants to consider all information simultaneously and to simulate clinical situations in which 

radiologists must evaluate multiple sources of information simultaneously.  

During each trial, we collected qualitative and quantitative data in multiple ways. First, we asked 

participants to complete the trial following the think-aloud method (van Someren et al. 1994). This method 

has successfully been applied in IS research to study decision making processes (e.g., Todd and Benbasat 

1991, Li et al. 2017). We followed the guidelines of van Someren et al. (1994) and provided a cover story 

as well as a training task to familiarize participants with the procedure. The think-aloud protocols were 

recorded on video and audio. All verbal statements were transcribed. Second, at the beginning of the study 

and after each trial, we asked participants to complete a questionnaire indicating their decision confidence 

and satisfaction (survey items in online Appendix C). Finally, we conducted a short interview with the 

participants before debriefing. We asked them to reflect on their general attitude toward AI in healthcare 

and describe how they experienced the interaction with the AI advice during the study. The procedure, 

survey, and interview questions were pretested with a radiologist and two novice physicians. Table 3 

provides an overview of the experimental procedure and the data collected. Participants required, on 

average, 2:21 minutes for the control trial (min = 0:41 minutes; max = 4:53 minutes) and 2:34 minutes for 
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the supported trials (min = 1:00 minute; max = 7:01 minutes). After each trial, participants had 40 seconds 

to rest and to prepare for the next trial. The total experiment lasted between 20 and 30 minutes. 

Table 3. Study procedure and data collection 

Step in the 
experiment Detailed procedure Experimental manipulation Data collection Trial AI advice Patient case 
Introduction - Welcome and consent 

- 3:47 min introduction video 
- Training in think-aloud task 
- Initial survey 

None - Demographic information 
- General expertise 

Interaction 
with CAID 
system 

- Task: Develop a diagnosis 
decision for the patient case 
(COPD or NO COPD) 

- Think-aloud 
- Brief survey after each trial 

1 None COPD/ 
NO COPD 
(randomized 
2:1) 

- Accuracy of the decision: correct 
and incorrect 

- Think-aloud protocols of the 
decision making process 

- Confidence and satisfaction ratings 
from survey 

- Observer notes 

2 Randomized correct 
and incorrect AI 
advice with COPD / 
NO COPD 

3 

End of study - Interview 
- Extensive debriefing 

None - Recorded, transcribed interviews 

Participants 

We selected novice physicians as participants for two primary reasons: First, since novice 

physicians are the target group for CAID support, CAID systems will have a stronger impact on their 

professional futures. Second, research has indicated that novice physicians are more likely to comply with 

CAID systems by adapting their diagnosis (Goddard et al. 2012). By choosing novice physicians, we 

experimentally overestimated the occurrence of medical diagnostic errors in order to identify different 

underlying reasons for these errors. Our first study included a mix of 47 participants consisting of 26 novice 

physicians without clinical experience (medical students with 4 years of medical training, on average) and 

21 novice physicians with clinical experience (between 0.5 and 1.0 years of clinical experience).  

Data triangulation  

We used two additional data samples to triangulate our findings. First, we conducted a second data 

collection using a slightly varied interface but the same experimental procedure. In this experiment, the AI 

advice was provided after the display of the CT image and the predicted values (see online Appendix D for 

more details on the experimental set-up). This ensured that all participants made an explicit initial 

assessment before engaging with the AI advice and then compared their assessment with the AI advice. 

This reversed-order experiment involved a sample of 21 novice physicians, consisting of nine physicians 
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in their first clinical year (between 0.5 and 1.0 years of clinical experience) and 12 advanced medical 

students (4.5 years of medical training, on average). Second, we collected data from a sample of experienced 

radiologists (n = 12) with an average of 9.28 years of clinical experience. Of those, four received the original 

experimental design while the remaining eight received the reversed-order design. Triangulating our 

patterns and process model using experienced physicians helped us identify the mechanisms underlying the 

decision process, and to transfer our findings into clinical practice.  

Data Analysis 

Two researchers coded the data in an iterative approach of descriptive, axial, and theoretical coding 

(Strauss and Corbin 1990, Saldaña 2013). Table 4 depicts the descriptive codes including the predefined 

codes of the NDM and codes for metacognitions that emerged from the data (see online Appendix E for 

details on the coding procedure). Through axial coding, we identified five decision making patterns that 

differed in the metacognitions they involved. Finally, theoretical coding allowed us to develop a process 

model of medical diagnosis decision augmentation with AI advice. The model reveals the underlying 

mechanisms that lead physicians to either follow AI advice or remain with their own initial frame.  

Descriptive coding 

We began by descriptively coding each sentence from the think-aloud protocols that included a 

new step in participants’ reasoning. These codes were then arranged along a temporal process (see Table 4 

for definitions), which helped us identify the metacognitive activities and the NDM process steps. We coded 

the decisions according to if participants changed or preserved their frame based on the last frame before 

they detected a problem. Based on the data analysis, three categories of metacognitions emerged. First, self-

monitoring describes the subjective assessment of how well a cognitive task is, will, or has been performed 

by oneself (Ackerman and Thompson 2017). Two subcategories of self-monitoring are feeling of rightness 

and personal decision process. Feeling of rightness describes the conviction of the correctness of one’s 

own frame based on the belief in personal capabilities to make a correct diagnostic decision, whereas 

personal decision process describes the calibration of one’s confidence through the assessment of one’s 

personal decision making process. Second, system-monitoring emerged as a subjective assessment of how 
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well a cognitive task is, will, or has been performed by the system. System-monitoring has two subcategories. 

System capabilities describes the conviction of the system’s correctness based on the belief in the system’s 

capabilities to make a correct diagnostic assessment, whereas system inference process describes the 

calibration of the perceived system accuracy through the assessment of the system’s inference process. 

Finally, we identified three metacognitive control activities: Frame elaboration describes a phase of 

assessing the provided data after detecting a problem. Inference control refers to activities that control the 

personal decision making process—for example, ignoring information, purposefully considering the 

information in a specific order, or creating multiple contrasting combinations of pieces of information. 

Asking for additional support refers to decision makers asking for human expert advice or additional clinical 

information. 

 

Table 4. Overview of descriptive codes  

Concept and definition Sample code 
A priori defined codes based on the NDM framework 

Develop frame 
  

Subtle complexes of data which 
lead to building the frame (Klein et 
al. 2005) 

Accumulate cues about the 
patient case 

“On the left, there are already 
inhomogeneous as well as 
hypodense areas” (Participant 35) 
(assessment of CT) 

The mental simulation of 
experiences and data into a mental 
model (Klein 2008). Usually the 
frame is built through pattern 
recognition 

Develop preliminary hypothesis 
about diagnosis of COPD 

“That’s ... there’s definitely COPD” 
(Participant 9)  

Detect problem The accumulation of discrepancies 
between the observation and 
desired states as well as the 
violation of expectations (Klein et 
al. 2005)  

Detect that the provided 
information does not fit 
coherently  

“So, I probably would have thought 
that was more of a COPD right now. 
Hm… but the tool tells me 
something else now” (Participant 
22) 

Preserve or 
change frame  

As an outcome of the sensemaking 
activities, decision makers preserve 
or change the frame to a 
presumably better one (Klein et al. 
2005) 

Derive a diagnosis decision 
whether the patient has COPD 
or not. Coded as preserving or 
changing the frame based on the 
frame before the problem 
detection 

“…so I'm saying NO COPD” 
(Participant 15) 

Emerged codes for metacognition 
Self-monitoring Subjective assessment of how well 

a cognitive task is, will, or has 
been performed by oneself (based 
on Ackerman and Thompson 2017) 

1. Feeling of rightness:  
Consider subjective beliefs in 
own correctness (based upon 
Ackerman and Thompson 2017) 

“Even though I'm not an expert...” 
(Participant 41) 

2. Personal decision process:  
Evaluate the correctness of the 
own decision making process 
based on the provided data 

“But then I don't understand why 
the LAV should be 0%” (Participant 
43) 
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System-
monitoring 

Subjective assessment of how well 
a cognitive task is, will, or has 
been performed by the system 
(based on Ackerman and 
Thompson 2017) 

3. System capabilities:  
Consider subjective beliefs in 
CAID system accuracy 

“It would be stupid not to believe 
the CAID since it has learned it” 
(Participant 31) 

4. System inference process:  
Evaluate the perceived accuracy 
of the AI based on the provided 
data 

“And he [the AI] is still saying 
COPD now.… he is probably saying 
that now because of the -635 (mean 
lung density value)” (Participant 19) 

Control Initiating, terminating, or changing 
the allocation of effort to a 
cognitive task (based on Ackerman 
and Thompson 2017) 
 

5. Frame elaboration:  
Consider data after problem 
detection. Often new pieces of 
information or previous sources 

“But, in the introduction video, 
there was more severe emphysema 
in the lungs than in this picture” 
(Participant 40) 

6. Inference control:  
Activity to selectively include 
or exclude certain pieces of 
information  

“I'm trying not to look at the AI 
advice this time so I don’t get 
distracted.” (Participant 2)  

7. Asking for additional support 
Asking for additional 
information or human expert 
advice 

“So, if this were a clinical situation, 
I’d get some more expert advice.” 
(Participant 20) 

Pattern-identification 

We used axial coding to identify patterns of metacognitive activities (see online Appendix E for 

details). For the pattern development, we combined evidence from the think-aloud protocols, survey data 

of each participant, post-experiment interviews, video recordings, and observations of the participants 

during the interaction with the CAID system. The patterns evolved through an iterative process of analyzing 

the qualitative and quantitative data. We incorporated data displays, tables with event frequencies, data 

matrices, and pattern matching (Miles and Huberman 1994). A total of five distinct patterns emerged that 

we elaborate in the results section. 

Development of a process model  

Next, we identified the theoretical mechanisms underlying the decision making process with AI 

advice (Strauss and Corbin 1990, Saldaña 2013). We used memos, transcripts, data matrices, and pattern 

visualizations (Miles and Huberman 1994 p.46). Through theory building, we developed a process model 

of medical diagnosis decision augmentation with AI advice. Our analysis revealed that decision makers 

must overcome two dynamic conflicts between self-monitoring and system-monitoring. We demonstrate 

that the way decision makers navigate through these conflicts influences not only the success of their 

interactions with AI advice but also their satisfaction and final confidence in the decision.  

RESULTS 
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In the following section, we first categorize the decision outcomes in our study regarding the 

correctness of the final decision (accuracy rate). Subsequently, we describe patterns how physicians 

proceeded when AI advice confirmed or disconfirmed their assessments. Finally, we report the results of 

triangulating our findings with novice and experienced physicians. 

Categorization of participants according to decision outcomes 

Table 5 provides an overview of the participants’ accuracy rates in diagnosing patient cases with 

correct and incorrect AI advice. In the control trial without AI advice, participants achieved an accuracy 

rate of 77%, which is comparable to the approximately 80% accuracy rate found in practice (Alberdi et al. 

2004). Compared to the control trial, the accuracy rate for diagnoses supported by correct AI advice was 

marginally higher (χ2(1) = 3.05, p < 0.10), whereas the accuracy rate was significantly lower for diagnoses 

with incorrect AI advice (χ2(1) = 9.31, p < 0.05). The difference between diagnoses with correct versus 

incorrect AI advice was significant (χ2(1) = 19.84, p < 0.001). In our experiment, the overall accuracy rate 

with CAID support was 72.09%. However, our CAID system provided 50% incorrect advice, which means 

that our system was significantly less accurate than CAID systems used in clinical practice. To position our 

results in relation to other studies and actual clinical practice, we extrapolated the overall accuracy rates 

based on our sample’s accuracy rate in the context of correct and incorrect advice, respectively. For CAID 

systems providing correct advice 90% of the time, which corresponds with clinical practice (see, e.g., Jiang 

et al. 2017), the extrapolation indicates that the overall accuracy rate of our sample would rise to 86.88% 

(see online Appendix F). According to this extrapolation, novice physicians would clearly perform better 

with the support of a relatively accurate (90%) but imperfect CAID system than without any CAID system 

at all. As indicated in Table 5, participants experienced more disconfirmation from incorrect advice 

(Disconfirmation II) than from correct advice (Disconfirmation I). Eight participants felt confirmed by 

incorrect advice (Confirmation II). We found no evidence to suggest that performance in the incorrect AI 

advice trial was influenced by expertise or demographic variables: there was no significant difference 

between participants who decided correctly or incorrectly in their self-assessed expertise (T(43) = -0.03, p 
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= 0.98), their semester of study (T(43) = -0.65, p = 0.52), amount of clinical experience (T(43) = -0.65, p = 

0.52) or demographic variables (see online Appendix G). 

Table 5. Novice physicians’ accuracy rates and occurrence of confirmation and disconfirmation 

Experimental condition and 
number of participants 

Novice physicians 
with correct final 
diagnosis (accuracy 
rate) 

Number of novice physicians with initial 
frame that was… 
Correct  Incorrect 

AI 
advice 
 

Control (No AI 
advice) (n=47) 

76.60% 
(n=36) NA 

Correct  
(n=42) 

90.48%  
(n=38) 

Confirmation I  
80.95% 
(n=34) 

Disconfirmation I  
19.05% 
(n=8) 

Incorrect  
(n=44) 

54.55%  
(n=24) 

Disconfirmation II  
81.82% 
(n=36) 

Confirmation II  
18.18% 
(n=8) 

Notes. Each participant (n=47) participated in all three trials and received one case of correct and one case 
of incorrect AI advice. Five participants in the correct advice trial and three participants in the incorrect 
advice trial reported not seeing the AI advice and were thus excluded from the analysis in this trial. 

Identified confirmation and disconfirmation patterns 

The participants differed in their decision making and usage of metacognitions. Based on the 

analysis of our qualitative data, we identified five patterns that impacted accuracy rates, confidence, and 

satisfaction. In the unsupported trial, most participants remained with their first assessment. Thus, the 

decision accuracy was strongly dependent on the accuracy of the first, often intuitive assessment (see online 

Appendix H for more details).  

Illustrating pattern 1: Confirmation 

Confirmation is characterized by decision makers preserving their frame after a brief assessment 

of the provided data. We observed two different subpatterns of confirmation. First, participants evaluated 

provided data and then experienced a confirmation, which increased their confidence. Second, AI advice 

strongly influenced participants’ assessments and frame building.  

Pattern 1a. Data-based confirmation. When AI advice confirmed participants’ assessments, 

confidence in their own assessment increased. As illustrated in the following example of Participant 11, the 

decision making process was straightforward and coherent and involved no jumping between features or 

cognitive activities. Participant 11 first assessed the provided information (Lines 1-9). Afterwards, the 
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participant built a frame determining that the patient suffers from COPD (Lines 10-12). Since the CAID 

confirmed the frame (Line 12), the physician preserved the original frame (Lines 13-14).  

1 Ok, so the first thing I see is that the artificial intelligence brings up COPD as a diagnosis.  

Accumulate 
cues 

2 I am now considering the image 
3 and that already looks very...dark, so...yes.  
4 Taken together...quite large portions of rather dark tissue.  
5 Then I look at the values again,  
6 we have the mean lung density again,  
7 which is much too low.  
8 This time also the LAV is 46%,  
9 which is quite a lot,  
10 so, I would have already said it was COPD.  

Build frame 11 And with the picture...I would also say it is COPD.  
12 And if the artificial intelligence also says COPD... then.  
13 Yes, the total volume is also increased.  

Preserve frame 14 I would also say COPD.  

Physicians following this pattern considered all information and verified that all available data 

pointed in the same direction. This process increased their confidence and satisfaction with the decision. 

The accuracy was not determined by the AI advice but hinged on the correctness of the frame of the decision 

maker; the AI advice merely supported the physician’s frame. However, some of our study participants 

indicated that they did not view a system as beneficial that just confirmed their own assessments.  

Pattern 1b. AI-based confirmation. In contrast to Pattern 1a, AI advice also influenced how decision 

makers built their frame. Physicians following this pattern built their frame explicitly on the AI advice and 

did not sufficiently evaluate all the available information. For instance, Participant 31 received incorrect AI 

advice in the third trial while diagnosing a healthy patient. The CAID system incorrectly advised that the 

patient is suffering from COPD. 

1 So, if I look again, the diagnosis [of the CAID] is COPD. 

Develop AI- 
based frame 

2 now I am looking at the lung CT... 
3 oh, or rather I didn't make (the diagnosis), the system made the decision 
4 Now I'm looking at the lung CT myself. 
5 So, at the base, it still looks relatively normal. 
6 If I go further up,  
7 you can already see that the tissue is partially hypodenic.  
8 But I find significantly less [hypodenic tissue] than in the last patient. 
9 So I personally think it would have been harder for me to diagnose Feeling of 

rightness  10 if I hadn't had the support right now. 
… …  
19 but I [would say it’s COPD] and not as acute as the last patient. Preserve frame 

During the frame-development phase, participants following this pattern developed a weak frame 

that was strongly influenced by the AI advice (Lines 1-4). Participant 31, for example, did not use 
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background knowledge and did not recognize patterns in the data to develop a frame. In general, participants 

following this pattern perceived the AI advice to be very positive and supportive. For instance, Participant 

14 described the influence of the CAID system in the follow-up interview: “(…) it influenced me a lot. At 

least it gave me a lot of certainty.” Participants who followed this pattern did not critically reflect upon the 

suggestion of the AI advice. If the AI was correct, this resulted in an accurate final diagnosis. However, if 

the AI was incorrect, this pattern was highly problematic, as it yielded an incorrect diagnosis.  

Identified disconfirmation patterns 

If the AI did not confirm physicians’ frame, they detected a problem and engaged in various 

metacognitions to resolve this discrepancy.  

Illustrating pattern 2: Belief conformity 

Facing disconfirmation, individuals who followed one of two belief-conformity patterns did not 

assess provided information but only evaluated their beliefs in their own reasoning capabilities against their 

beliefs in the system accuracy. There were two dimensions of this pattern: decision makers either believed 

strongly in their own capabilities and ignored disconfirming AI advice without further evaluation (Pattern 

2a: Ignoring the AI) or they trusted the AI judgment much more than their own assessment and blindly 

followed the system advice (Pattern 2b: Favoring the AI).  

Pattern 2a. Ignoring the AI. Physicians adhering to this pattern did not consider the AI any further 

in their reasoning if it disconfirmed their own assessments. For instance, after realizing that the AI 

disconfirmed his assessment, Participant 12 argued: “He [the AI] recommends NO COPD. But, I’d still say 

it is COPD.” The participant did not provide any further reasoning or justification as to why the AI should 

be rejected. Whereas such behavior does empower physicians to overrule incorrect AI advice, it may be 

highly problematic in situations where the physician is wrong and the AI advice is correct. Few of the 

novice physicians in our study chose to ignore the AI when the advice was provided in parallel with all the 

other information. This pattern was more frequently found in the reversed-order sample and among 

experienced physicians (see section Triangulation below). 
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Pattern 2b. Favoring the AI. A more common pattern observed among novice physicians was 

favoring the AI, in which decision makers developed a correct frame but struggled with disconfirming AI 

advice because of a conflict between their beliefs in their own competence and their beliefs in the AI 

capabilities. For instance, Participant 20 encountered incorrect advice in the third trial when diagnosing a 

patient suffering from COPD. In this case, the AI advice incorrectly indicated “NO COPD”. The participant 

first developed the correct frame that the patient suffered from COPD (Line 8) after assessing four different 

pieces of data. In Line 9, the participant then explicitly detected that the AI gave disconfirming advice. 

Participant 20 then engaged in metacognitive monitoring including both system-monitoring and self-

monitoring (Lines 10-14), but did not further assess the data. She then changed her frame in favor of the AI 

advice. 

1 Now I also see the...recommendation, which is relatively prominent.  
Develop frame … … 

8 So, I probably would have thought that this was COPD right now.  
9 Hm...but the tool tells me something else now.  Detect problem 
10 Of course, the question is whether I trust it or not.  Belief in system 

capabilities 11 Um, um...hm...Now I'm trying to judge how accurate the tool is  
12 and how accurate I am in my personal judgment.  Feeling of 

rightness 13 As a nonexpert for COPD, I would have trusted the tool, but I'm very unsure about it.  
14 So, if this were a clinical situation, I’d get some advice from an expert.  Ask for additional 

support 
15 But right now, I have to say something, so I'm saying NO COPD.  Change frame 

Through these activities, the participant aimed to resolve the conflict between her frame and the AI 

advice. The participant monitored her belief in the reliability of the tool and compared it to her “personal 

judgment.” These activities resulted in being even more uncertain regarding her own judgment, although 

she had already developed a correct diagnosis in Line 8. In Line 14, her low confidence in the decision 

combined with high beliefs in the capabilities of the AI resulted in being unable to decide without additional 

human expert advice. Like Participant 20, half of the participants following this pattern indicated they 

would have liked to request additional human expert advice. However, in the context of this high-pressure 

set-up, Participant 20 eventually complied with the CAID suggestion. In her follow-up interview, 

Participant 20 stated that she perceived the CAID system to be more accurate than her own judgment 

because of the huge database it relied on. Furthermore, she admitted that she was very uncertain: “… um, 
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but the second time I was a bit confused, because I thought something else than what the tool said. And 

then I was just uncertain, who’s right now, me or the tool?”  

We observed a similar pattern in Participant 23 who followed incorrect AI advice, stating that she 

“would be not so sure now. But if in doubt, I would trust the AI.” As indicated by Participant 16, the CAID 

system offered something to rely on and something on which a decision could be based: “…as soon as I 

have the feeling I am not completely informed, I’d rather rely on something I can stick to. So, it [the AI] 

has more influence [on my decision].” To summarize, individuals following this decision pattern tackled 

disconfirmation based on their beliefs in their own competence versus their beliefs in the system capabilities. 

These individuals did not try to validate the advice by using available data; rather, they relied on their 

beliefs that CAID systems are highly accurate. They were often insecure about their final assessments and 

many would have preferred to also consult a human expert. Neither pattern 2a nor pattern 2b involved 

participants exerting significant effort to deliberately verify which diagnosis was correct—their own 

assessments or the AI advice.  

 

Illustrating pattern 3: Self-justification  

Compared to the belief-conformity patterns, physicians following the self-justification pattern used 

additional control processes to elaborate on the provided data and to determine if their own assessment or 

the system was correct. However, these physicians only used the data to trace back their own reasoning 

processes without deeply considering the AI advice. Specifically, these physicians only reassessed the data 

that served as a foundation for their first frame and often tried to justify their assessments by reusing the 

same input data without considering new information. In this pattern, AI advice was often rejected without 

further elaboration on its accuracy and without aiming to understand the underlying reasoning. If one’s 

frame is incorrect, this strategy leads to incorrect decisions. Furthermore, although many decision makers 

who applied this strategy did make correct decisions, they often reported less satisfaction and less 

confidence in their final diagnoses. 

Illustrating pattern 4: System-justification  
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In contrast to self-justification, system-justification describes physicians who validate AI advice 

without comparing it to their own reasoning processes. System-justification can take two forms: (1) 

Physicians can validate system advice by searching for information supporting the AI advice, which leads 

them to ignore their own assessments and follow the AI advice (supporting the AI). (2) Physicians can come 

up with reasons that justify why they assume that the AI assessment is incorrect, which leads them to reject 

the advice (explaining away).  

Pattern 4a: Supporting the AI. Decision makers who followed this pattern adjusted their own 

assessments to confirm the AI advice. During the decision making process, the AI advice served as a 

decision anchor that influenced how information was processed. For instance, when faced with 

disconfirming AI advice, Participant 11 did not discard the AI advice; instead, he developed an alternative 

explanation to mitigate the conflict between his frame and the AI advice. Participant 11 accumulated cues 

provided in the CT image (Lines 1-7) and then realized that the AI advice conflicted with his frame (Lines 

8-9). However, instead of realizing that this conflict might have resulted from incorrect AI advice, the 

participant looked for an alternative explanation to resolve the problem (Line 10), namely that the patient 

had “emphysema” and not COPD. Emphysema can be considered a symptom of COPD, but it does not 

necessarily indicate that the patient suffers from COPD. Thus, by diagnosing “emphysema”, the physician 

accounted for the fact that the patient was not healthy while also accommodating the AI advice of NO 

COPD. The participant decided on a milder, but incorrect diagnosis in order to follow the AI advice. 

Through this process, other information that was clearly suggestive of COPD was not adequately considered 

and, in practice, this could have resulted in withholding COPD treatment from the patient. From a 

metacognitive perspective, this participant considered only the possibility of his own failure, rather than the 

possibility of a CAID failure. He used metacognitive control based purely on system-monitoring to change 

his initial assessment so that it became commensurate with the AI advice. 

… [… various symptoms indicating COPD] Detect problem 
8 Ah, and artificial intelligence says it's NO COPD.  
9 And this LAV value...is still higher...than it should be in a healthy person.  Frame 

elaboration to 
support AI 

10 Yeah... so it could just be emphysema.  
11 Um...but you see, so what was explained in the video, you can see that.  
12 So, these changes in the middle compared to the outside.  
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13 Hm...so I think... that there is somehow a change… which does not look healthy.  
14 It could be pulmonary emphysema now, which is relatively pronounced.  
15 Whether this is COPD... yes, in theory it could be.  
16 Well, let's say pulmonary emphysema rather than COPD. Change frame 

Pattern 4b: Explaining away. Physicians following this pattern addressed the disconfirmation by 

searching for indicators that could explain why the CAID may have provided incorrect advice in a specific 

patient case. For instance, Participant 17 was confronted with incorrect AI advice that conflicted with her 

own assessment. However, the decision conflict was quickly resolved when Participant 17 located one value 

in the table of predicted values that she deemed not to fit with the other values and could possibly explain 

why the CAID system gave incorrect advice (Line 14): “it [the AI] is probably saying this now because of 

the -635 (mean lung density value).” Similarly, Participant 22 resolved the disconfirmation by stating: “I 

would have thought now that the picture is simply incorrectly rendered so that the program does not 

recognize it as emphysema.” However, in our experimental design, all values except for the AI advice were 

aligned to point toward the correct diagnosis and there were no rendering errors. Nevertheless, while finding 

a possible explanation helped physicians discard the AI advice as incorrect, this would be potentially 

harmful in cases of correct AI advice. To summarize, both patterns of system-justification relied on 

metacognitive control to resolve the disconfirmation but focused exclusively on justifying why the system 

developed its assessment. In supporting the AI, the system was thought to be correct, whereas in explaining 

away, the system advice was discarded as resulting from system malfunction. Both patterns lacked 

validation of the decision maker’s own reasoning process. Thus, if the CAID system provided incorrect 

advice, supporting the AI resulted in an incorrect diagnosis decision. Similarly, if the CAID system provided 

correct advice, explaining away resulted in an incorrect diagnosis decision. 

Illustrating pattern 5: Active consideration 

The final pattern describes physicians who account for both their own assessment and the system 

advice by considering both perspectives equally. The pattern is characterized by an in-depth decision 

making process with multiple iterations. For instance, Participant 18 received incorrect AI advice in the 

third trial. The CAID incorrectly advised NO COPD. 

1 Okay, we're looking at another CT scan.  Develop frame 
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…  
7 all this speaks for COPD...according to the table.  
…   
14 Ah the artificial intelligence says that it's NO COPD.  

Detect problem 15 The CT picture looks pretty bad to me,  
16 it definitely doesn't look like a normal lung should,  
17 I don't agree with the artificial intelligence.  Personal decision 

process + inference 
control 

18 I did my diagnostics without looking at it,  
19 consciously, to be honest.  
20 You can see that the...air pockets...are not as...blatant as in the picture before.  Frame elaboration 21 So, it is not so conspicuous now but, nevertheless, there are different densities…  
…   
27 Well, I'm just looking at the picture again and again from top to bottom.  Personal decision 

process 28 Of course, I got a little confused by the statement made by the artificial intelligence.  
29 But, it still does not look like a normal lung picture to me.  Preserve frame 30 and so, I'd say there's a pathological finding, more like COPD. 

The participant first analyzed the provided data in the table (Lines 1-6) and accumulated the 

necessary information to build a frame (Line 7) and concluded that the patient clearly suffered from COPD. 

Then, the participant became aware of the conflict between the AI advice and her frame because the CAID 

indicated NO COPD (Lines 13-17). This resulted in a phase of metacognitions, in which the participant 

described inference control and how she excluded the AI advice when building her frame (Lines 18-19). 

Through this process, she increased the validity of her reasoning in comparison to the AI advice. After 

elaborating the frame for a second time and probing all factors that could potentially coincide with the AI 

advice, she correctly rejected the advice. In total, three characteristics of Participant 18’s decision making 

process explain why Participant 18 preserved her frame, even though it was contrary to the AI advice. First, 

the participant exerted inference control by combining different pieces of information and leaving out 

others (i.e., the AI advice) to probe her hypothesis from different angles (Lines 17-19). Second, the 

participant evaluated both her own reasoning and the system advice. She traced back her own reasoning 

and tried to understand why the system had made its assessment. Lastly, she engaged in neutral frame 

elaboration, equally considering both the AI advice and her original frame. Participants following this 

pattern developed differentiated attitudes toward the CAID system; they perceived it as supportive but also 

recognized the need to constantly monitor the system’s decisions.  

Similarities and differences in confidence and satisfaction across patterns  

We used survey data to compare how the qualitative patterns differed in terms of their reported 

confidence and satisfaction (see online Appendix I). Regardless of the correctness of the advice, decision 
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makers reported lower confidence (T(85) = -3.24, p < 0.001) and satisfaction (T(85) = -2.06, p < 0.05) if 

their decisions were disconfirmed versus confirmed. Individuals following data-based confirmation were 

the most confident (M = 3.47, SD = 3.81) and among the most satisfied (M = 3.81, SD = 0.92) with their 

decisions and with their interactions with the CAID system. Although disconfirmation was associated with 

an average drop in confidence, this drop was not spread equally across all patterns. Favoring the AI resulted 

in the lowest confidence (M = 1.81, SD = 0.77) and satisfaction (M = 2.36, SD = 0.88). Furthermore, 

patterns primarily based either on self-monitoring or system-monitoring exclusively were associated with 

low confidence (M = 2.13, SD = 0.95 for self-justification; M = 2.80, SD = 0.87 for supporting the AI) and 

satisfaction (M = 3.00, SD = 1.21 for self-justification; M = 2.53, SD = 0.96 for supporting the AI). 

Interestingly, individuals who adhered to the explaining away pattern reported high confidence (M = 3.34, 

SD = 0.76) and satisfaction (M = 4.13, SD = 0.51) even though their assessments were primarily driven by 

system-monitoring alone and their assessments were not based on the data. Decisions based on a 

combination of both system-monitoring and self-monitoring (i.e., active consideration) were associated 

with high confidence (M = 3.30, SD = 0.80) and satisfaction (M = 3.58, SD = 0.70). 

Triangulation  

We triangulated our findings from two different perspectives. First, we corroborated the identified 

patterns in a follow-up experiment applying a reversed-order design. Second, we evaluated how experience 

influenced the identified patterns with a sample of experienced radiologists. 

Reversed-order experiment 

The accuracy rate of novice physicians in the reversed-order experiment did not differ from the 

main experiment in the control trial (χ2(1) = 0.21, p = 0.65), correct AI advice trial (χ2(1)=0.43, p=0.51), 

and incorrect AI advice trial (χ2(1)=1.69, p=0.19). Results of the second, reversed-order experiment 

generally corroborated the identified patterns of the main, parallel-order experiment (see Appendix B and 

online Appendix J for direct comparison). AI-based confirmation was less prominent in the reversed-order 

experiment than it was in the parallel-order experiment, whereas the ignoring the AI pattern occurred much 

more frequently in the reversed-order experiment across all groups of participants. Probably due to the 
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smaller sample size, we did not find any occurrence of explaining away in the reversed-order experiment. 

The triangulation through a reversed-order experiment allowed us to understand the nuances of the 

identified patterns and rule out concerns about the influence of our study design on the identified patterns.  

Patterns with experienced radiologists 

Overall, we found that the patterns we identified among novice physicians also occurred with our 

sample of experienced radiologists. However, differences emerged because of substantial experience of 

these radiologists in diagnosing CT images (see Table B.1 in the Appendix). First, we observed that 

experienced physicians based their frame more on pattern recognition than on the AI advice. Furthermore, 

we discovered that the experienced physicians considered more differentiated aspects and different 

alternative diagnoses when building their frame and deriving a final decision. We also observed that the 

experienced physicians more frequently chose to ignore disconfirming advice even if it was actually correct 

(Disconfirmation I). Thus, the accuracy rate in the correct AI advice trial did not differ significantly from 

that of the novice physicians (G2(1) = 0.44, p = 0.61). In addition, if the disconfirming advice was incorrect 

(Disconfirmation II), experienced physicians used more control activities, i.e., frame elaboration and 

inference control, than novice physicians. However, we observed that the experienced physicians more 

frequently followed the supporting the AI pattern and developed a solution that was commensurate with 

both their own assessments and the AI advice. This process resulted, to our surprise, in a nonsignificant 

difference in the number of accurate results, as compared to the novice physician sample (G2(1) = 0.58, p 

= 0.53). Finally, the accuracy rate of experienced radiologists in the unsupported trial was descriptively 

higher than that of novice physicians at 83.3% (10 out of 12), but was not statistically significant (G2(1) = 

0.27, p = 0.72).  

ANALYTICAL SUMMARY: A PROCESS MODEL OF MEDICAL DIAGNOSIS 

DECISION AUGMENTATION WITH AI ADVICE  

We analyzed similarities and differences among the five patterns (see Table 6) to develop a process 

model that depicts how physicians make diagnostic decisions augmented by AI advice and to understand 

what determines whether physicians accept or discard incorrect AI advice. The resulting model is displayed 
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in Figure 2. It proposes that the physicians’ decision to either preserve or change their initial frame is based 

on (1) whether AI advice confirms or disconfirms their assessment and (2) on distinct configurations of 

metacognitions, which we depict as two metacognitive conflicts.   

Interacting with confirming AI advice  

In general, if physicians feel confirmed by AI advice, they preserve their frame without engaging 

in extensive metacognitive activities. The AI advice reduces uncertainty, increases physicians’ final 

confidence in their diagnosis, and their satisfaction with the CAID system. A first crucial possibility for 

error occurs, however, if physicians develop their frame primarily based on received AI advice instead of 

extensive data analysis (AI-based confirmation). Physicians who develop an AI-based frame fully rely on 

the AI advice as an easy solution, in which they are also fully confident. This is particularly critical if the 

AI advice is incorrect as it easily persuades physicians to make incorrect diagnostic decisions. Alternatively, 

physicians can develop their frame through recognizing patterns in available data using their skills and 

intuition. Once they compare the AI advice with their independently developed frame, they perceive a 

confirmation only if the AI advice corresponds to the frame (data-based confirmation). Only if physicians 

engage in data-based frame building, they are able to detect possible incongruences between provided AI 

advice and other data. 

Table 6. Differences and similarities of patterns regarding metacognitions 

Pattern Description  Distinctive metacognitive activities Experienced 
conflicts 

Accuracy of 
decision Self-

monitoring 
System-
monitoring 

Control 

1: Confirmation    
 

  
1a) Data-
based 
confirmation 

AI advice confirms 
frame based on 
pattern recognition  

- - Cue 
accumulation  

- Typically 
accurate 

1b) AI-based 
confirmation 

Frame is built upon 
AI advice  

- - - - Depends on 
CAID 
accuracy 

Disconfirming AI advice 
2: Belief conformity      
2a) Ignoring 
the AI 

AI advice is ignored 
without further 
evaluation 

Strong feeling 
of rightness 

Weak belief in 
system 
capabilities 

- Belief 
conflict 

Depends on 
correctness 
of frame 

2b) Favoring 
the AI 

Strong beliefs in AI 
capabilities drive 
decision 

Weak feeling of 
rightness  

Strong belief in 
system 
capabilities 

- Belief 
conflict 

Depends on 
CAID 
accuracy 

3: Self-justification      
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3) Self-
justification 

Data analyzed to 
support own 
assessment only 

Focus on one’s 
own decision 
making process 

- Frame 
elaboration  

Validation 
conflict 

Depends on 
correctness 
of frame 

4: System-justification      
4a) 
Supporting 
the AI 

Data analyzed to 
support AI 
assessment only 

- Develop 
understanding 
of AI inference  

Frame 
elaboration 

Validation 
conflict 

Depends on 
CAID 
accuracy 

4b) 
Explaining 
away 

Data analyzed to 
find inference error 
of AI  

-  Develop 
understanding 
of AI as error 

Frame 
elaboration 

Validation 
conflict 

Depends on 
correctness 
of frame 

5: Active consideration      
5) Active 
consideration 

Neutral evaluation 
of all data 

Focus on one’s 
own decision 
making process 

Develop 
understanding 
of AI inference  

Frame 
elaboration + 
Inference 
control 

Validation 
conflict 

Typically 
accurate 
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Figure 2. Process model of medical diagnosis decision augmentation with AI advice  
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Resolving two metacognitive conflicts in disconfirmation 

By contrast, if the AI advice does not coincide with a physician’s initial frame, they experience 

a disconfirmation of their assessment and, thus, they can either preserve or change their frame for 

concluding a diagnostic decision. The subsequent evaluation unfolds along a sequence of two 

metacognitive conflicts: the belief and validation conflicts. In the belief conflict, physicians base their 

decisions on rather stable beliefs about themselves and the system. More specifically, they compare their 

beliefs in the CAID system’s capabilities to offer a correct diagnosis against their feeling of rightness, 

i.e., their belief in their own capabilities to make a correct diagnosis. Navigating this conflict, physicians 

immediately make a diagnosis decision if one of these beliefs is much stronger than the other. In this 

case, physicians do not consider any additional data but make a final diagnostic decision based on the 

dominant belief (ignoring the AI or favoring the AI). Especially in the favoring the AI pattern, physicians 

tend to remain mired in the belief conflict as their strong beliefs in the system’s capabilities conflict with 

their frame. Therefore, they often lose confidence in their decision and try to consult additional expert 

sources. 

If neither belief is dominant, physicians move into the validation conflict, in which they use 

additional data to validate their own frame and the AI advice. Aiming to resolve the validation conflict, 

decision makers continuously evaluate their personal confidence into their own frame against their 

perception of the system accuracy. Physicians preserve their frame if they are more confident in the 

correctness of their own frame in comparison with their perception of the AI advice accuracy. Otherwise 

they change their frame to correspond to the AI advice. Distinct metacognitive activities, namely system-

monitoring and self-monitoring, determine the direction of this evaluation. As such, physicians who 

base the elaboration of their frame primarily on self-monitoring focus on their own decision process, 

trace back their own steps, and double-check whether the data fit their intermediary conclusions. These 

individuals often repeat their prior reasoning pathways and tend to overlook data elements that speak 

for the correctness of the AI advice (self-justification). By contrast, physicians who base the elaboration 

of their frame primarily on system-monitoring focus on the system inference quality and try to 

understand how the CAID system came to its conclusion. They search for data that provides proof for 

the accuracy or the inaccuracy of the AI advice. These individuals tend to either follow the AI advice 
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because they identify data that supports the AI advice (supporting the AI) or they dismiss the AI advice 

as a system failure because they identify potential errors in the data, which lowers their perception of 

the system’s accuracy (explaining away). In either case, the physicians engage intensively with the AI 

advice but fail to compare the advice critically with their own assessment process. Only those physicians 

who reassess available data based on both self-monitoring and system-monitoring are able to conduct a 

neutral assessment (active consideration). Physicians engaging in active consideration compare the 

steps of their decision process with the data elements that support the AI advice and then refine their 

perceived confidence in the accuracy of their original frame and their perceived system accuracy. 

Overall, the degree to which physicians rely on self-monitoring and system-monitoring to navigate the 

two metacognitive conflicts determines if they preserve or change their frame in the face of 

disconfirming AI advice.  

Accepting or discarding incorrect AI advice 

Reacting appropriately to incorrect AI advice is highly challenging. In our study, we observed 

that the frequency of different patterns is related to the correctness of the AI advice and the expertise of 

the participants. Novice physicians more frequently fail to discard incorrect advice (Disconfirmation II) 

than experienced radiologists, whereas experienced radiologists more often ignore correct advice 

(Disconfirmation I). Our model outlines three decision pathways that lead physicians to inaccurate 

decisions given incorrect AI advice. First, decision makers can fail to detect a problem with incorrect 

AI advice since they base their own initial frames on the advice and thus perceive it as confirming (AI-

based confirmation). We found this pattern to occur most frequently among medical students with little 

clinical experience. Second, physicians confronted with the belief conflict who have strong beliefs in 

the capabilities of a CAID system often unduly accept incorrect AI advice. Their strong beliefs in the 

system capabilities combined with doubt about their own capabilities reduce their decision confidence 

and leave them vulnerable to accepting incorrect advice (favoring the AI). Finally, individuals engaged 

in a validation conflict who reassess data primarily based on system-monitoring often fail to question 

the AI advice as they search for data that correspond to the advice (supporting the AI). In the context of 

incorrect AI advice, it is worth mentioning that individuals who favor the AI and support the AI initially 
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develop a correct frame but change it to correspond with the incorrect AI advice. Only active 

consideration results in successful interactions with both correct and incorrect AI advice. 

DISCUSSION 

Our study elaborates how physicians evaluate AI advice and how CAID systems influence their 

decision making process. Current research focuses primarily on how to leverage and improve AI 

capabilities to technologically support human decision makers in order to reduce human errors (e.g., 

Cheng et al. 2016, Kleinberg et al. 2018, Ahsen et al. 2019). Our study sheds light on a different but 

overlooked facet of decision augmentation with AI, namely the crucial role of human actors in 

compensating for technology errors. Decision makers such as physicians have the important role of 

mitigating the biases of AI-based systems and deciding whether AI advice should be transformed into 

concrete action. Although our study indicates that correct AI advice improves physicians’ accuracy, our 

findings reveal three reasons that prevent physicians from reaping the full benefits of advice from CAID 

systems: First, the AI advice can influence physicians at the beginning of their decision making process. 

Thus, they may fail to conduct their own assessment of the data independently. Second, when AI advice 

disconfirms physicians’ opinions, physicians are vulnerable to making incorrect diagnoses if they base 

their decision solely on their beliefs in their own capabilities or on their beliefs in system capabilities 

without further validation of available data. While more experienced physicians are more likely to ignore 

AI advice and disregard correct advice, novice physicians tend to lose confidence in their own 

assessments and are then prone to falling for incorrect advice. Overall, such belief-based decisions lead 

to lower confidence and less satisfaction with the system. Third, even if physicians exert metacognitive 

control and use data to validate received AI advice, the evaluation is often exclusively based on either 

self-monitoring or system-monitoring. Thus, physicians either attempt to reevaluate their personal 

decision process without sufficiently considering the AI advice or they try to find available data to 

support the system assessment without sufficiently considering that it may be incorrect. Yet, decision 

augmentation is most successful if decision makers draw on both system-monitoring and self-monitoring 

metacognitions to actively reconsider their own assessments as well as the accuracy of system advice. 

Our findings have a number of implications for research and practice. 
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First, from a theoretical perspective, we add to the literature by developing a process model of 

decision augmentation with system advice that accounts for the role of metacognitions. Our model 

integrates fragmented findings of prior research on system advice by identifying two metacognitive 

conflicts that are dynamically interrelated. As such, prior research suggested on the one hand that 

deliberate, in-depth reasoning is crucial when dealing with system advice (e.g., Heart et al. 2011) and 

on the other hand that decision makers fail to engage in such reasoning due to a number of heuristic 

biases towards systems as well as against systems (e.g., Adomavicius et al. 2013, Dietvorst et al. 2015). 

In doing so, prior work took a static perspective and regarded deliberate, systematic reasoning and 

superficial, heuristic reasoning in isolation from each other (Farrett et al. 2018). In contrast, our model 

shows that decision makers increasingly apply deliberate reasoning activities as they move from the 

belief conflict to the validation conflict. Beyond that, our metacognitive perspective helps to understand 

dynamic shifts between systematic and heuristic reasoning that can occur multiple times during the 

decision making process. For instance, even if decision makers deliberately evaluate system advice 

during the validation conflict, they can still be misled into a quick and superficial information search if 

they only engage in system-justification. Our model thereby accounts for the rising criticism on dual 

process theories as artificially dividing heuristic from systematic reasoning processes although decision 

makers often shift from one to the other dynamically (Evans and Stanovich 2013, Farrett et al. 2018). 

Moreover, we add to research on metacognitions by distinguishing system-monitoring from self-

monitoring metacognitions. Whereas research on metacognitions has elaborated on the role of self-

monitoring (Ackerman and Thompson 2017, Fiedler et al. 2019), we demonstrate that decision makers 

also monitor a system’s performance. Self-monitoring and system-monitoring metacognitions can 

condition each other and their dynamic interplay influences decision outcomes. Our findings moreover 

suggest that system design can affect the prevalence of metacognitions and cognitive patterns. 

Specifically, physicians more often ignored disconfirming advice when the advice was presented after 

they had already made their own assessments. Future research should thus investigate how the use of 

metacognitions can be influenced by system design in a more nuanced way. 

Second, our findings raise broader societal questions about the impact of AI on decision 

augmentation. Current discussions often revolve around the automation of tasks and if human experts 
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or AI-based systems should have primary agency in important decisions (Nissen and Segupta 2006, 

Demetis and Lee 2018, Rahwan et al. 2019). For AI-based systems in healthcare, this discussion was 

seemingly resolved when developers and physicians agreed that AI-based systems should only support 

the medical experts responsible for making final decisions (e.g., Cheng et al. 2016, Ahsen et al. 2019, 

Shen et al. 2019). Our findings demonstrate that this perspective neglects that human decision makers 

may lose major parts of their decision agency in the presence of AI-based systems without even noticing 

it. Specifically, our study suggests that if decision makers fail to engage in adequate metacognitive 

activities, they become cognitively unable to discard incorrect AI advice. Although final decision 

authority may rest with human decision makers, the actual decisions can be strongly impacted by AI 

advice. This can easily lead to a broader but less obvious substitution of human agency in crucial 

decision tasks than previously acknowledged. Thus, IS research should take cognitive factors in 

decisions with AI-based systems more openly into account. It should help to lead the societal discussion 

of whether this agency shift is desirable and how it can be regulated. Meanwhile, authorities that develop 

regulatory guidelines for the use of CAID systems in clinical practice need to recognize the cognitive 

challenges of physicians working with CAID systems. In particular, if CAID systems disconfirm 

physicians’ assessments, it can be near impossible for physicians to reject AI advice if they are already 

involved in an intricate decision process. Future research on the use of AI-based systems needs to 

account for shifts in agency that users may not be aware of. Overall, our findings fuel the need to develop 

new theories, methods, and guidelines that account for this shift in agency (Nissen and Segupta 2006, 

Demetis and Lee 2018, Schuetz and Venkatesh 2020).  

Third, our findings contribute to research on the interaction of physicians with clinical decision 

support systems. Without technological support, many medical errors occur because physicians often 

rely on their intuitive judgment and do not seek disconfirming information (Lee et al. 2013). Accurate 

CAID systems improve the overall accuracy of medical decisions and reduce medical errors (see Table 

5). Although the overall decision making process may not differ between AI-based and rule-based 

systems, the distinct properties of CAID systems strongly influence system-monitoring metacognitions. 

As such, medical AI-based systems currently cause controversies regarding their actual performance 

versus expectations towards them (see Appendix A). Without prior experience with AI, many physicians 
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assume that AI-based systems work as a general AI that is able to cover a broad range of tasks 

autonomously. However, many current AI-based systems are narrow and specialized solutions that are 

trained to perform specific and relatively simple clinical tasks. In clinical practice, such expectations are 

therefore often violated and might contribute to an aversion to CAID systems (Dietvorst et al. 2015, 

Kohli and Tan 2016) and enforce decisions based on the belief conflict. Moreover, the current lack of 

transparency of AI-based systems creates difficulties in the validation conflict as monitoring the 

perceived system accuracy is more challenging compared to rule-based systems. With advances in 

explainable AI (Rai 2020), these difficulties will likely decrease as the reasoning behind AI advice 

becomes more comprehensible. In fact, there will likely be additional interactions between system-

monitoring and self-monitoring as CAID systems become more explainable and powerful. As such, 

physicians may use provided explanations to learn from CAID systems and to gain new insights derived 

from the systems’ pattern analysis. However, to benefit from these explanations, physicians need to 

further engage in active consideration as decisions based on the belief conflict would not result in 

increased knowledge and learning. Thus, future research needs to consider potential long-term feedback 

loops between different cognitive patterns and subsequent interactions with AI advice. 

From a practical perspective, our findings can be utilized for training physicians in the use of 

CAID systems, especially in terms of dealing with disconfirming advice. Our results suggest that 

incorrect AI advice influences novice physicians in earlier stages of their decision making process than 

experienced physicians. Novices often fully base their diagnostic assessment on AI advice or follow the 

AI in the belief conflict whereas experienced physicians are more often influenced during the validation 

conflict. Thus, novice physicians must be trained in traditional data assessment skills and procedures to 

be able and willing to verify the accuracy of AI advice early on. For experienced physicians, it is 

important that they invest the additional effort of engaging in both system-monitoring and self-

monitoring so that they do not unduly reject disconfirming advice but still spot occasional errors. In 

general, it is necessary for physicians to become aware of the different steps in their decision making 

process and to identify where mistakes are likely to happen. Otherwise, they may remain unaware that 

they are biased by provided advice. For example decision makers who based their initial assessments 

on AI advice did not consider that the advice might be incorrect at all. Moreover, we noticed that 
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physicians may fail to recognize the benefits of AI advice in confirmation if it “just” supports their own 

assessment. To prevent disconfirmed expectations, physicians should be made aware that confirmations 

through AI advice reduce ambiguity and uncertainty in a valuable way. To summarize, raising awareness 

of the cognitive mechanisms of the decision making process can help physicians to reap more benefits 

from diagnostic AI-based systems in the future.  

Finally, our findings suggest that it is important to reconsider the role of radiologists who 

interact with CAID systems. Our findings do not suggest that replacing radiologists would actually lead 

to more accurate results. On the contrary, we argue that augmented intelligence is better than automation 

alone and we advocate for the consideration of both the human and technological aspects of medical 

diagnoses. Radiologists are increasingly becoming information specialists (Jha and Topol, 2016). In the 

future, radiologists may become orchestrators of multiple, distinct AI-based systems in different 

workflow steps, critical validators of system results, and translators between AI-based systems, 

clinicians, and patients. Although the speed and direction of AI technology development are unknown, 

it is necessary for radiologists to engage with AI-based systems in order to cope with increasing 

complexity, workload, and demographic changes in the clinical landscape. 

Study limitations and future directions 

Based on our choice of experimental design, our study has limitations that yield several paths 

for future research. First, our study participants were not allowed to gather additional information or 

seek human advice. However, we found that, especially in the favoring the AI pattern, the study 

participants desired human expert advice. Because of our study design, we do not know if decision 

makers wish to consult human experts in the case of disconfirmation because they explicitly distrust the 

AI technology (cf. Longoni et al. 2019) or if they would generally prefer another opinion. Moreover, 

interactions with human expert advice versus AI advice are likely to be very different. For instance, 

physicians can more easily dismiss disconfirming AI advice than human expert advice. Future research 

should therefore evaluate how physicians would integrate both sources of advice into their decision 

making process. Second, to examine the effects of AI advice on the decision making process, we 

included few details about our CAID system into the study design. Although there are AI technologies 

that are more transparent, black-box approaches based on deep learning such as ours are quite common, 
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particularly in radiology. Whereas our research provides insights into the latter area, future research 

should evaluate how variations such as providing explanations, explicit uncertainty and reliability rates, 

graphical information (e.g., coloring the relevant lung areas), or providing a choice as to whether to 

solicit system advice would lead to a different distribution of decision patterns. Third, compared to our 

experimental design, the decision making process in clinical practice is much more complex because 

decisions are often team-based and made under high time and resource pressure with numerous sources 

of clinical information (Burgess et al. 2010). Also, patients can suffer from multiple, interdependent 

conditions while symptoms and clinical data are often inconsistent. Therefore, future research should 

extend our insights and assess how these factors influence the process of medical diagnosis decision 

augmentation in clinical practice. Finally, although we propose that active consideration leads to the 

most elaborate decisions with AI advice, it is important to acknowledge that this pattern might not 

always be the most efficient solution in clinical practice. Specifically, decision making processes that 

reach the validation conflict need more time and effort than decisions made in earlier stages of the 

process. Considering the high workload of physicians, future research should reflect when and how 

physicians should optimally use active consideration to achieve the best results in clinical practice. 
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APPENDIX  

Appendix A – Conceptual similarities and differences between AI-based (CAID) and rule-based 
computer-aided diagnosis systems 
 
Table A.1. Conceptual similarities and differences between AI-based (CAID) and rule-based computer-aided diagnosis systems 

  AI-based computer-aided diagnosis systems for 
radiology1 

(Traditional) rule-based computer-aided 
diagnosis systems for radiology2 

Aim of the 
algorithm 

- Provide second opinion/advice  
- Automating workflows 

- Provide support in process and decisions 
- Standardizing workflows  

Knowledge 
base 

- Inference from large data sets relatively 
independent from human expertise 

- Algorithms can develop new inferences 

- Externalized knowledge and experience of 
human experts  

- Algorithms are static 
Algorithm 
properties 

- Learning: rules and conditions are not 
predefined, but emerge from data 

- Algorithms are often stabilized for usage in 
clinical practice; learning is restricted to model 
training 

- Inference logic neither transparent nor 
explainable (esp. deep neural networks) 

- Heterogeneous sources of information can be 
integrated more easily  

- Rule-based: rules and conditions are 
predefined and must be manually expanded, 
often applied to standardized procedures and 
criteria 

- Inference logic is transparent and can be 
traced and explained 

- Integration of heterogeneous sources very 
challenging as it requires manual adjustment 
of rules  

Algorithm 
performance 

- Errors are not predicable as they result from 
biases in training data 

- Higher accuracy and efficiency 

- Errors follow static patterns 
- Often high numbers of false positives  

Role of the 
human  

- Design, train, and implement the algorithm in 
clinical practice 

- Select meaningful parameters and context in 
the algorithm development 

- Provide classified data and ensure the quality 
of the data 

- Usage in clinical practice: interpret and 
validate the output of the system and use it as a 
second opinion 

- Design and implement the algorithm in 
clinical practice 

- Specify the problem and extract and 
categorize human knowledge to develop the 
algorithm 

- Define conditions and rules for the algorithm 
(incl. boundaries and exceptions) 

- Update the knowledge base on a regular 
basis  

- Usage in clinical practice: follow a 
standardized procedure with multiple 
interaction points (e.g., enter input data); 
validate the process and output 

Challenges - Data basis: the “ground truth” is often 
determined by physicians, which involves high 
manual effort, errors, and biases 

- Data availability: in practice, it is often difficult 
to integrate new data because of inconsistent 
data quality 

- Specialized AI vs general AI: high expectations 
of AI performance often stem from a belief in 
the accuracy of general AI; however, current 
AI solutions often perform narrow tasks and 
are highly specialized 

- Interpretation of outcome: low transparency 
and explainability; psychological challenges of 
evaluating advice when it conflicts with one’s 
own assessment 

- Inflexibility of the algorithms: many 
boundaries in clinical decision making 

- Integration into the workflow: multiple steps 
of interaction are necessary and can change 
existent workflows 

- Interaction with the physician: motivating 
the physician to use the support is 
challenging and often unsuccessful 

- Electronic health records as data basis: 
challenges of data standardization and 
integration 

Notes. This overview was developed based on expert interviews and literature synthesis of Berg 1997, Cheng et al. 2016, 
Jiang et al. 2017, Fazal et al. 2018, Ahsen et al. 2019, Mayo et al. 2019, Rahwan et al. 2019 and Shen et al. 2019 

1. We only focus on current systems in radiology, which are digital systems with no physical representation (in 
contrast to, e.g., robots). These systems mainly have two AI properties: machine learning (often with deep 
neural networks) and image recognition. This means that many AI capabilities (for example, natural language 
processing and speech recognition) are not considered in this context. 

2. The conceptual line between AI-based systems and rule-based systems is often blurred as there are different 
understandings of intelligence. Thus, this differentiation is conceptual in nature. 
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Appendix B – Occurrences of patterns based on level of experience and experimental 

design  

The following Table B.1 and Table J.1 in the online Appendix compare the pattern occurrences 

based on different degrees of expertise. For these analyses, we split the sample of novice physicians into 

novice physicians without clinical experience and novice physicians with clinical experience. Through 

clinical training, novice physicians gain practical experience in diagnosing and thus, in comparison to 

physicians with no clinical experience, their reasoning process will be closer to that of experienced 

radiologists. All groups (novice physicians with and without clinical experience as well as experienced 

radiologists) made more inaccurate diagnosis decisions when provided with incorrect AI advice than 

without advice. Except explaining away, all patterns from the original parallel-order experiment also 

occurred in the reversed-order experiment. With higher degrees of experience, physicians used more 

data-based patterns. In addition, novice physicians with clinical experience reported more satisfaction 

and confidence if they followed the self-justification pattern, in comparison to novice physicians without 

clinical experience. In our experiment, experienced radiologists did not show AI-based confirmation 

patterns. Thus, neither the sample characteristics nor the experimental order we chose for the original 

parallel-order experiment systematically influenced the appearance of the identified patterns, but they 

did influence their frequency. More details can be found in online Appendix J.1.  

Table B.1. Comparison of patterns based on expertise  

  Novice physicians 
(without clinical 
experience) of main 
experiment 

Novice physicians 
(with clinical 
experience) of main 
experiment 

Experienced 
radiologists 

Mean accuracy 
rates 

Control 80.78% 71.43% 83.33% 
Correct AI advice 86.96% 94.74% 83.33% 
Incorrect AI advice 45.83% 65.00% 66.67% 

Major 
differences in 
sensemaking  

Confirmation 
patterns 

Data (1a) and AI-based 
confirmation (1b) 

Data (1a) and AI-based 
confirmation (1b) 

Data-based confirmation 
(1a) 

Disconfirmation  
patterns  

- Favoring the AI (2b) 
- Self-justification (3) 
- Very few cases of 
system-justification (4a 
and 4b) and active 
consideration (5) 

- Favoring the AI (2b) 
- Explaining away (4a) 
and Confirming AI (4b) 
- Active consideration 
(5) 

- Ignoring the AI (2a) 
- Supporting the AI (4b) 
- Active consideration 
(5) 

Cause for 
inaccurate decision 

- AI-based 
confirmation for 
incorrect advice (1a) 
- Favoring the AI (2b) 

- Favoring the AI (2b) 
- Supporting the AI 
(4b) 

- Ignoring of correct AI 
advice (2a) 
- Supporting the AI (4b) 

 

 


