

Financial Ratios

Ernst Maug

University of Mannheim

http://cf.bwl.uni-mannheim.de

maug@uni-mannheim.de

Tel: +49 (621) 181-1951

明制

Valuation with multiples

- → Many practitioners use multiples to value companies.
- → Example: Price-Earnings ratio (P/E)
- → Procedure:
 - Select set of comparable companies
 - Compute average P/E-ratio of comparables
 - Multiply earnings of company to be valued with average P/E of comparables
 - Done!
- → Advantages: easy, no estimation of value drivers
- → Problems: lots!

Popular multiples used for valuation

- → Ratios for firm value (= debt + equity):
 - Value-to-sales ratio
 - Value-to-cash-flow ratio
 - Value-to-EBIT ratio
 - Value-to-EBITDA ratio
 - Market-to-book ratio (value over total assets)
 - Tobin's q (market value over replacement value)
- → Ratios for equity value:
 - P/E ratio (price over net income)
 - Market-to-book ratio (price over book value of equity)
- Numerator and denominator should match!

Valuing a Company Using P/E-Multiples

- → The three steps of using P/E multiples company valuation:
 - 1. Find a sample of comparable companies
 - 2. Compute the average of their P/E ratios
 - 3. Multiply earnings by average P/E from step 2
- → Example: Daimler
 - Comparables: BMW, VW, Toyota, Renault, Fiat, (PSA)

Averaging method	Average	Value	Error
Mean	25.48	163.04 €	165%
Median	10.74	68.71 €	12%
Harmonic mean	12.57	80.44 €	31%
Geometric mean	15.85	101.43 €	65%
Actual values Daimler	9.61	61.53€	0%

For calculations see *Financial Ratios – Multiples.xls*, tab "Valuation".

What is the conceptual basis?

- → Develop a financial ratio from DCF-WACC:
 - Assume constant growth *g* of unlevered cash flows:

$$V_0 = \frac{(1+g)FCF_0^U}{r_{WACC} - g} \Leftrightarrow \frac{V_0}{FCF_0^U} = \frac{1+g}{r_{WACC} - g}$$

- "Value-to-unlevered-cash-flow" ratio
- → Choose comparable firms with
 - similar growth rate g
 - similar costs of capital r_{WACC}

DCF and multiples

An example for a 2-stage model

- → Assume that company
 - grows at rate g_1 for the next 5 years
 - grows at rate *g* in perpetuity thereafter

$$V_{0} = \sum_{t=1}^{t=5} \frac{FCF_{0}^{U} (1+g_{1})^{t}}{(1+r_{WACC})^{t}} + \frac{(1+g)(1+g_{1})^{5} FCF_{0}^{U}}{(1+r_{WACC})^{5} (r_{WACC}-g)}$$

→ Then the Value/Cash-Flow-ratio becomes:

$$\frac{V_0}{FCF_0^U} = \sum_{t=1}^{t=5} \left(\frac{1+g_1}{1+r_{WACC}}\right)^t + \left(\frac{1+g_1}{1+r_{WACC}}\right)^5 \frac{(1+g)}{(r_{WACC}-g)}$$

Other multiples

→ Recall the P/E-ratio and the DDM:

$$V_0 = \frac{(1+g)d_0}{r_e - g} \& d_0 = \pi EPS_0 \implies \frac{P_0}{EPS_0} = \frac{(1+g)\pi}{r_e - g}$$

- → Value to Sales in a two-stage model:
 - Assume constant cash-flow margin m=FCF^U/S

$$\frac{V_0}{S_0} = m \left[\sum_{t=1}^{t=5} \left(\frac{1+g_1}{1+r_{WACC}} \right)^t + \left(\frac{1+g_1}{1+r_{WACC}} \right)^5 \frac{(1+g)}{(r_{WACC}-g)} \right]$$

Lessons for the selection of comparables

- → Multiples valuation avoids the estimation of cash flows, sales forecasts, margins, growth rates, payout ratios.
- Instead uses market assessment of all valuations combined
- → Implicit assumption: comparable companies have:
 - Similar growth rates
 - Similar stage (fast growth / slow growth)
 - Similar margins
 - Similar cost of capital or cost of equity (leverage!)
 - Similar payout ratios

Popular financial ratios used for valuation

- → Which numbers are used?
 - Always: current market prices in the numerator
 - For **trailing ratios**, use the latest historical number in the denominator.
 - For **leading ratios**, use analysts' forecasts in the denominator.
- → Some ratios are heavily influenced by accounting choices:
 - P/E ratio, EBIT ratio, EBITDA ratio
 - To get around this problem:
 - Re-adjust earnings for special items
 - Use ratios based on financial numbers "further up in the income statement", e.g. value-to-sales ratio.

Exit multiples

- DCF-valuation always requires a terminal value.
 - Yet little is known about the distant future.
 - Growth rates in perpetuity formula difficult to evaluate
 - But the terminal value has a lot of weight in the final valuation (typically > 70%).
- → Industry practice: use exit multiples:
 - Forecast cash flows, EBIT, EBITDA etc. for 5-8 years
 - Terminal value assessed as multiple of EBIT or EBITDA of final period:
 - Could also use multiples based on sales, assets
- → Do this as a diagnostic check on your DCF valuations:
 - Calculate EBIT, EBITDA, capital invested, etc. for last period
 - Calculate multiples implied by your DCF valuation
 - Compare those to companies with the same industry, size, growth prospects

Exit multiples (2)

- → Consider three-stage model from DCF-lecture
- → Calculate common multiples for 2022 (first year of third stage)

	Value/EBITDA	11.53	
	Value/EBIT	20.42	
	Value/Sales	1.84	
	Value _t /FCF _{t+1}	51.55	
	Equity _t /CFE _{t+1}	37.93	
	Dividend yield (CFE _{t+1} /Equity _t)	2.64%	
	Equity _t /NI _{t+1} (PE-ratio)	29.62	
	Value/Book value of assets	3.79	
	Market to book ratio (equity)	6.63	Markativalua af accata
	Tobin's q	2.93	TobinsQ = Market value of assets
Valuation looks ontimistic!			Replacement value of assets

→ Valuation looks optimistic!

Empirical evidence:

Which ratios are successful?

- → Liu, Nissim and Thomas (Journal of Accounting Research, 2002) perform a horse-race of different ratios:
 - For each firm, they use all firms from the same industry as comparables and calculate the average multiple.
 - Then they multiply this average multiple with the corresponding accounting number of the firm to be valued.
 - Finally, they compare the obtained value estimate with the firm's market capitalization.

→ Their findings are:

- Multiples derived from earnings *forecasts* have the lowest pricing errors.
- Multiples with historical earnings come second.
- Cash flow and book value of equity are tied for third.
- Sales perform worst.

Empirical evidence:

Which ratios are successful?

→ Repeated for

- 26,613 firm-year observations between 1982 and 1999
- for 19 different types of multiples.
- Measure of accuracy: Absolute difference between estimated value and market value

→ Their findings are:

- Multiples derived from earnings forecasts have the lowest pricing errors.
- Multiples with historical earnings come second.
- Cash flow and book value of equity are tied for third.
- Sales perform worst.

Empirical evidence:

Which ratios are successful?

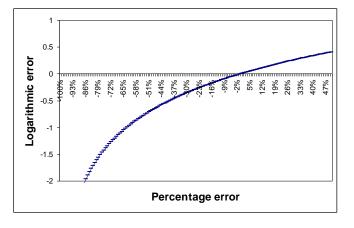
- → Other finding: Harmonic mean results in lower errors than arithmetic mean or median.
 - Harmonic mean:

$$m_h = n \left[\sum_{i=1}^n (x_i)^{-1} \right]^{-1}$$

- Arithmetic mean:

$$m_a = \frac{1}{n} \sum_{i=1}^n x_i$$

- These results are consistent across years and industries.


→ Dittmann, Maug (WP 2005) also include median and geometric mean:

$$m_g = \prod_{i=1}^{i=n} x_i^{1/n} = \exp\left\{\frac{1}{n} \sum_{i=1}^{i=n} \ln x_i\right\} = \exp\left\{m_a \left(\ln x_i\right)\right\}$$

→ Analyze percentage errors and log errors:

$$e_{P} = \frac{\stackrel{\wedge}{MV_{i}} - MV_{i}}{MV_{i}}, e_{log} = ln \frac{\stackrel{\wedge}{MV_{i}}}{MV_{i}}$$

- → Benchmark against "dummy procedures":
 - Set market value = book value, or equal to \$1

Empirical evidence (2):

- → Results of empirical analysis and simulations of Dittmann, Maug (WP 2005):
 - Harmonic mean is biased downward, about as much as arithmetic mean is biased upward.
 - Geometric mean and median are both good.

Conclusion

- → Multiples provide a short-cut.
- → Rely on comparability:
 - Companies from the same industry
 - Really companies with similar value drivers!
- → Averaging methods matter!
- → Recommended reading: Titman and Martin, Valuation: the Art and Science of Corporate Investment Decisions, Chapter 6.