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1 Introduction

Tail risk assessments over long horizons, such as one year, are an integral part of risk management

techniques in insurance companies and pension funds. In addition, they are increasingly adopted

for insurance regulation. Both major regulatory frameworks in Europe, Solvency II and the Swiss

Solvency Test (SST), rely on tail risk measures with a one-year horizon for setting capital require-

ments. The required risk estimation is particularly challenging for market risk because only limited

amounts of data are available at a yearly horizon and the distribution of the relevant risk factors

often varies substantially over time.

Solvency II, which we will mainly focus on, uses the Value-at-Risk (VaR) at the 99.5% proba-

bility level over a one-year horizon for setting solvency capital requirements, so that the available

capital can absorb potential losses in 199 out of 200 years.1 The European Insurance and Oc-

cupational Pension Authority (EIOPA) estimates corresponding shocks from time series of highly

overlapping one-year risk factor changes (CEIOPS, 2010). This approach has not only been chal-

lenged due to statistical problems arising from the large autocorrelation of overlapping data,2 it has

also been criticized more fundamentally due to its backward-looking nature. For example, Eling

and Pankoke (2014) argue that

“[...] research should investigate whether it is possible to calibrate capital requirements
using factors other than historical data in order to mitigate backward-looking charac-
teristics. Insurers should not only be ready for the last, but also for the next crisis.”

In this paper, we develop a new methodology for the measurement of long-term market tail

risk which reduces the reliance on past price data by incorporating information from options on

the relevant risk factors. More specifically, we propose a two-step procedure for the calculation of

long-term tail risk estimates that builds on ideas from the literature on extracting option-implied

physical distributions (see, e.g., Bliss and Panigirtzoglou, 2004, Liu et al., 2007 or Ghysels and

Wang (2014)) and, in particular, on a technique recently proposed by Huggenberger et al. (2018):

First, we extract the relevant risk-neutral distributions from option prices. Second, we apply an

approximation of the (projected) stochastic discount factor (SDF) for transforming risk-neutral into
1Details about Solvency II can be found in the Delegated Regulation EIOPA (2014).
2Mittnik (2016) concludes that “an implementation of the standard formula with the currently proposed calibra-

tion settings for equity–risk is likely to produce inaccurate, biased and, over time, highly erratic capital requirements”.
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the corresponding physical probabilities. To obtain estimates for the parameters of the projected

SDF, we exploit information from the gap between the variances under the risk-neutral pricing

measure and the physical probability measure. The tails of the resulting distributions are then

used to calculate risk forecasts and capital requirements.

We implement this methodology for interest rate and equity risk. Our analysis of long-term

interest rate tail risk relies on swaptions with one year to maturity. On each forecasting day, we

recover the distribution of swap rate changes under the forward risk-neutral measure for selected

tenors from prices of receiver and payer swaptions across a range of strikes.3 Our approach exploits

a special feature of EUR-swaptions, whose payo�s on the expiration date only depend on a single

swap rate, so that we can recover information on di�erent rates separately without additional

assumptions on the term structure on that day. For long-term equity tail risk, we propose to use

the prices of index calls and puts with maturities close to one year and again di�erent strikes. In

both cases, we assume a mixture of normals for recovering the risk-neutral distribution.4 Although

the mixture structure substantially extends the flexibility compared to simple Gaussian models,

it allows for straightforward extensions of standard pricing techniques and a closed-form solution

for the measure change, so that we can derive analytical characterizations of long-term equity and

interest rate risk forecasts.

In our empirical analysis, we investigate tail risk estimates for 5-, 10- and 20-year EUR interest

rates as well as one-year tail risk forecasts for the Eurostoxx 50, the S&P 500 and the FTSE 100.

For each of these risk factors, we compute option-implied risk-neutral and physical one-year 99.5%-

VaR-forecasts at the end of each month between 01/2006 and 12/2019. We compare our results to

the shocks according to the current Solvency II standard formula and, for interest rate risk, to a

revised proposal that EIOPA issued in the context of the “2020 Review of Solvency II” (EIOPA,

2020).5 Furthermore, we include the following standard benchmarks: simple quantile estimates

derived from a normal distribution with monthly data and time scaling as well as simulated tail

risk forecasts that are derived from (E)GARCH models estimated with daily data. The Gaussian
3For the conversion between spot and swap rates, we rely on the assumption of a small and deterministic spread.

Note that the Solvency II basic risk-free term structure typically also relies on swap rates (European Commission,
2014, Articles 44 and 45).

4Note that standard exponential specifications of the pricing kernel restrict the application of alternative distri-
butions with Pareto tails for modeling the risk-neutral probability law.

5See https://www.eiopa.europa.eu/content/opinion-2020-review-of-solvency-ii for this review process.
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benchmark VaRs can be seen as an implementation of the econometric approach proposed by the

Swiss Solvency Test (Finma, 2017).6

Over our sample period, the average option-implied tail risk estimate for an increase in the 10-

year rate corresponds to 2.01 percentage points and the corresponding estimate for an interest rate

decrease is given by 1.39 percentage points.7 The implied distributions of interest rate changes vary

substantially over time and often exhibit pronounced asymmetries, which seem to reflect expected

changes in the economic environment such as the reduction of interest rates during the financial

crisis. The option-implied downward (upward) shocks for the 10-year rate range between 0.97 and

2.97 (0.63 and 2.84) percentage points. Our downward interest rate shocks extracted from option

prices are always larger than the corresponding Solvency II shocks with the average implied shock

being almost twice as large as the average shock according to the current Solvency II standard

formula.8 In the case of the upward shocks, we observe higher levels of the Solvency II benchmark

during the first years of our sample whereas the implied tail risk estimates are substantially higher

during the second half of our sample period. We also find pronounced di�erences between option-

implied risk estimates and selected benchmark forecasts relying on past interest rate changes. In

particular, during the current low interest rate environment, option-implied upward (downward)

shocks are higher (lower) than the corresponding risk forecasts calibrated from past data.

In our equity risk analysis, we document average option-implied one-year VaRs of 47.76% for

the Eurostoxx 50, 45.52% for the S&P 500 and 42.97% for FTSE 100. For all markets, we find

the lowest tail risk estimates in 2006 (Eurostoxx: 38.41%) and the highest estimates during the

financial crisis (Eurostoxx: 62.33%). The average level of the option-implied tail risk estimates is in

each case larger than the unadjusted shock of 39% according to the Solvency II standard formula.

For the Eurostoxx 50, the average di�erence amounts to 8.76% and it can reach values of more than

20% over time. Applying the macroprudential “symmetric” adjustment to the option-implied tail

risk estimates partially o�-sets their time-series variation. The standard deviation of the adjusted

option-implied estimates is lower than the standard deviation of the adjusted Solvency II shocks.

Comparing the option-implied equity risk estimates to forecasts based on past data, we find that
6Note, however, that the SST relies on the Expected Shortfall instead of the VaR.
7Our results for the di�erent maturities are qualitatively similar.
8Interestingly, a similar average di�erence is also observed between the shocks according to the current and the

revised Solvency II interest rate methodology. Over our sample period, the average downward shock for the revised
approach corresponds to 1.50 percentage points.
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VaR-forecasts derived from a normal distribution and EGARCH models are lower during crisis

periods. In contrast, risk forecasts generated with Filtered Historical Simulation typically exceed

our option-implied estimates.

Since the change from the risk-neutral to the physical probability measure is of particular rele-

vance for our methodology, we test the robustness of our results with respect to di�erent implemen-

tations of our moment-based SDF calibration.9 In particular, we consider alternative benchmark

forecasts for the physical variance and we vary the window as well as the objective function for the

moment matching. In addition, we consider di�erent state numbers for the normal mixture models.

Overall, our results for interest rate and equity risk are relatively stable under these variations.

Finally, we investigate the economic importance of the documented di�erences by studying the

impact of using option-implied shocks within a partial internal model for two stylized life insurance

companies. We compare the overall market risk capital requirements from this internal model with

the requirements according to the standard formula and the Gaussian benchmark based on monthly

risk factor changes as proposed by the SST. We find that the standard formula in its current form

typically implies lower capital requirements than the benchmarks. Furthermore, option-implied

estimates indicate a higher level of risk during the financial crisis as well as during the recent low

interest rate period compared to the Solvency II standard formula.

Our research contributes to the literature that analyzes market risk capital requirements for

insurance companies in the context of Solvency II or the Swiss Solvency Test (Gatzert and Martin,

2012; Braun et al., 2014; Eder et al., 2014; Braun et al., 2017; Laas and Siegel, 2017). To the best of

our knowledge, option-implied methods have not been considered in this context yet, although they

seem to be well suited for at least two reasons: First, they overcome the drawbacks of conventional

statistical methods based on historical data when working with long holding periods and, second,

they quickly react to new information and changing market conditions.

With respect to Solvency II, we furthermore contribute to the ongoing review process, where

EIOPA (2018a) identified a “severe under-estimation of the risks” with the current interest rate

shocks. Our results tend to support the new EIOPA (2020)-proposal. Whereas the current Sol-

vency II shocks are often significantly smaller than the option-implied tail risk estimates, the revised
9In line with the existence of large risk premia in the tails, we find pronounced di�erences between our risk-neutral

and physical VaR-forecasts.
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Solvency II shocks are typically closer to these benchmarks – particularly during the current low

interest rate environment.

Beyond the determination of capital requirements, we contribute to the large body of literature

analyzing the advantages of using forward-looking information contained in option prices.10 Option-

implied Value-at-Risk forecasts have recently been studied by Ghysels and Wang (2014), Barone

Adesi (2016) and Huggenberger et al. (2018).11 Whereas those papers focus on short-maturity

options (typically around 30 days or less), we focus on options with long maturities, which allows us

to extract one-year risk forecasts. Option-implied interest rate tail risk has received considerably less

attention so far, but several studies extract probability distributions from interest rate derivatives.

For example, Trolle and Schwartz (2014) and Hattori et al. (2016) derive swap rate distributions

from swaption quotes, Li and Zhao (2009) and Ivanova and Puigvert Gutiérrez (2014) recover state-

price densities from interest rate caps and options on EURIBOR futures, respectively, and Beber

and Brandt (2006) compare probability densities implied by options on U.S. Treasury bond futures

before and after macroeconomic announcements.

Finally, the present work is related to the econometric literature on measuring long-term equity

risk (Guidolin and Timmermann, 2006; Engle, 2011) and long-term interest rate risk (Engle et al.,

2017) with methods that rely on historical data. Those papers apply parametric time-series tech-

niques to extrapolate risk forecasts from daily or monthly data to longer time horizons. We propose

an option-implied alternative to these techniques and compare our results to a selection of bench-

mark methods from this literature.12

The structure of this paper is as follows. Section 2 provides the necessary background on the

Solvency II standard formula. In Section 3, we describe our methodology for extracting option-

implied long-term VaR estimates. Our empirical results on one-year interest rate and equity tail

risk are summarized in the Sections 4 and 5. Section 6 introduces a partial internal model based

on option-implied shocks and compares the resulting capital requirements for market risk to the

Solvency II standard formula. Section 7 concludes.
10For equity options, a comprehensive literature overview is provided by Figlewski (2018) and an extensive review

on methods for estimating forward-looking interest rate distributions with a focus on short-term rates is provided by
Wright (2017).

11A related strand of literature (see, for example, Bollerslev and Todorov, 2011 or Andersen et al., 2017) studies
the extraction of left tail jump risk from derivatives and investigates implications for the equity risk premium.

12Note that our approach partially relies on results from this econometric literature as we use GARCH-based
volatility-forecasts to calibrate the pricing kernel.
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2 Background on Solvency II

Under Solvency II, the overall solvency capital requirement (SCR) is determined as the Value-at-

Risk (VaR) at the confidence level of 99.5% for the one-year loss in basic own funds. Basic own

funds BOFt at time t are defined as the di�erence between the values of assets At and liabilities

Lt (EIOPA, 2014), that is,

BOFt = At ≠ Lt. (1)

Furthermore, the VaR of a random loss L at the confidence level — can be defined as the lower

—-quantile of L, i.e.

VaR—[L] := inf{x œ R | P[L Æ x] Ø —}. (2)

It thus corresponds to the lowest loss level which is not exceeded with a probability of at least —.13

Denoting the change in basic own funds by �BOF = BOFt+1 ≠ BOFt, we formally obtain

SCR = VaR99.5%[≠�BOF ] (3)

for the overall solvency capital requirements.

Insurance companies can either use (partial) internal models, which need to be approved by

the regulator, or they can apply the standard formula in order to calculate the SCR. Most of the

companies currently apply the standard formula.14 The standard formula is a bottom-up approach:

It aggregates the risk from n sub-modules into the overall (basic) SCR using the following square-

root aggregation rule

SCR =
ı̂ıÙ

nÿ

i=1

nÿ

j=1

fli,j · SCRi · SCRj , (4)

where fli,j is a predefined correlation parameter for the module pair (i, j), i, j = 1, . . . , n, and SCRi

is the capital requirement for (sub-)module i, i = 1, . . . , n. The main risk modules are market risk,
13For continuous distributions, the VaR satisfies the simpler condition P[L Æ VaR— [L]] = —.
14See e.g. Milliman (2019).
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underwriting risk (life, non-life, health), counterparty default risk and the risk related to intangible

assets. For each main risk module, there are mostly further sub-modules. Importantly, the 99.5%-

VaR objective is applied to determine the capital requirement for each (sub-)module individually

(EIOPA, 2014, p. 7).15

We focus on capital requirements for interest rate risk SCRint and equity risk SCReq, which

are part of the market risk sub-module.16 BaFin (2011) reports that interest rate risk is the most

important risk category for life insurance companies and equity risk is the most important risk

type for non-life insurers within the market risk sub-module. According to the standard formula,

the SCRs for equity and interest rate risk are given by the loss in basic own funds resulting from

instantaneous shocks to the price of equity investments and to the term structure. The SCR of

module i is thus formally calculated based on

SCRi = ≠�BOF | shocki, (5)

where shocki indicates the shock scenario for the relevant risk factors of module i.

For equity risk, CEIOPS (2010) calibrates the corresponding shock with a non-parametric

99.5%-VaR estimator applied to overlapping one-year returns that are calculated from daily data

for each day of the sample period. From a statistical point of view, this calibration is problematic

due to a large overlap in the yearly returns that are used to calculate empirical quantiles (Mittnik,

2016). A symmetric adjustment is added to this baseline shock which works in a counter-cyclical

manner and has to be seen as a macroprudential tool. The precise rules for calculating the to-

tal shock according to the standard formula and more details on the symmetric adjustment are

provided in Appendix A.

According to Article 165 of the Delegated Regulation, the capital requirement for interest rate

risk is based on upward and downward shock scenarios for the term structure of interest rates.

More specifically, the maximum loss in basic under funds under both scenarios determines the

interest rate risk SCR. The calibration of the corresponding interest rate shocks is again based
15However, this bottom-up procedure does not necessarily ensure that the 99.5%-VaR objective is also met on the

company level (Pfeifer and Strassburger, 2008). EIOPA (2014) tries to address this issue by choosing appropriate
correlations for the square root aggregation (4).

16The further market risk sub-modules, which are not the focus of the present work, are property risk, spread risk,
market concentration risk and currency risk. Note that, overall, market risk is the most important risk category for
life and non-life insurance companies according to EIOPA (2018b).
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on overlapping one-year changes in the spot rates that are calculated on a daily basis (CEIOPS,

2010; EIOPA, 2016). For each maturity, the upward and downward shocks are calibrated to reflect

the 99.5%-quantile and the 0.5%-quantile of the relative one-year change in the spot rate (EIOPA,

2016, p. 65).17 This procedure implicitly assumes perfectly dependent shocks to the term structure.

The specific calculation of the Solvency II interest rate shocks is explained in Appendix A, where

we also introduce the recently proposed adjusted shocks (EIOPA, 2020).

To sum up, the equity shock and maturity-specific interest rate shocks calculated as 0.5%-

or 99.5%-quantiles of one-year risk factor changes are key inputs for the market risk module in

Solvency II.

3 Methodology

In this section, we first present a general methodology to determine distributions of long-term

risk factor changes based on option prices. Then, we discuss the specific implementation of this

methodology for long-term interest rate risk and equity risk.

3.1 Physical Option-Implied Distributions

Our approach builds on ideas developed by Bliss and Panigirtzoglou (2004), Liu et al. (2007)

and Ghysels and Wang (2014), who extract implied physical distributions from option prices by

combining risk-neutral distribution forecasts with a parametric form of the Stochastic Discount

Factor (SDF) that connects the risk-neutral and the physical probability law. This idea has recently

been exploited for short-term equity tail risk measurement by Huggenberger et al. (2018). We adapt

this methodology to long-term risk measurement for equity and interest rate risk factors.

The proposed methodology relies on the time-t prices of derivatives with maturity at time t + ·

to extract information about the distribution of the risk factor change Xt,· over the period [t, t+· ].

More specifically, we assume that we observe the market prices pt,1, . . . , pt,M of M derivatives,

whose payo�s at maturity only depend on Xt,· . In this case, the payo�s at maturity can be written

as Pt+·,i = vi(Xt,· ) with measurable functions vi : R æ R, i = 1, . . . , M .
17EIOPA does not directly use the empirical quantiles of the relative spot rate changes even if they argue that

this would also be a reasonable approach (EIOPA, 2016, p. 65). Instead, a technique relying on principal component
analysis is interposed to represent the relative spot rate changes as linear combinations of weighted principal scores
for each observation date (CEIOPS, 2010; EIOPA, 2016).
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Under no-arbitrage, the price of these derivatives can be represented using the well-known

risk-neutral pricing equation

pt,i = Bt,· Ẽt[vi(Xt,· )], (6)

where Ẽt is the expectation with respect to a forward martingale measure P̃ given the information

at time t and Bt,· denotes the time-t price of a zero-coupon bond with a face value of one and time

to maturity · .18

Furthermore, we exploit the existence of a stochastic discount factor (SDF) Mt,· in arbitrage-

free markets (Hansen and Richard, 1987). More specifically, we can rely on the projected SDF

M
ú
t,· := Et[Mt,· | Xt,· ] for the pricing of payo�s only depending on the risk-factor change Xt,·

(Rosenberg and Engle, 2002), where Et is the expectation under the physical measure. Using this

projection, the time-t price of the payo� Pt+·,i = vi(Xt,· ) can be written as

pt,i = Et[Mú
t,· vi(Xt,· )]. (7)

By the definition of the conditional expectation, there is a measurable function m
ú
t,· : R æ R

that satisfies M
ú
t,· = m

ú
t,· (Xt,· ). If we assume that the distribution of Xt,· is absolutely continuous,

then the comparison of equations (6) and (7) implies

ft,· (x) =
f̃t,· (x)/m

ú
t,· (x)

s
f̃t,· (s)/mú

t,·
(s) ds

, (8)

where f̃t,· denotes the density with respect to the forward risk-neutral measure19 P̃ and ft,· is the

physical density of Xt,· .20 Similar results are e.g. used by Bliss and Panigirtzoglou (2004), Liu

et al. (2007) as well as Huggenberger et al. (2018) for equity index returns and by Li and Zhao

(2009) for interest rate distributions. To implement this general relationship for the extraction of

long-term tail risk, we add the following two approximation arguments.
18In contrast to Huggenberger et al. (2018), we use the forward risk-neutral measure instead of the standard

risk-neutral measure, which allows us to avoid the assumption of a deterministic discount rate for the option payo�
in our interest rate application. The forward risk-neutral measure is obtained by choosing a zero-coupon bond with
maturity at t + · as numeraire. Cf., e.g., Li and Zhao (2009) or Wright (2017).

19In the following, we will simply refer to f̃t,· as the “risk-neutral” density.
20See Section I in the Online Appendix for details.
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First, we assume that the risk-neutral density f̃t,· can be approximated by a finite mixture of

normals. In contrast to normal distributions, mixtures of normals are highly flexible and allow

for skewness, excess kurtosis and multimodality. Besides, standard pricing techniques can often be

extended from simple normal distributions to normal mixtures. Due to this flexibility and analytical

tractability, they have been used in a number of previous studies to extract probability distributions

implied from equity and interest rate derivatives (see, e.g., Melick and Thomas, 1997; Liu et al.,

2007; Huggenberger et al., 2018). Under the mixture assumption, the risk-neutral density function

of Xt,· conditional on the information available at time t can be written as

f̃t,· (x) =
Kÿ

k=1

fĩt,k Ï(x; · m̃t,k, · ‡̃
2

t,k), (9)

where Ï( · ; m, ‡
2) is the probability density of a normal distribution with mean m and variance ‡

2.

fĩt,k Ø 0, k = 1, . . . , K, are weights of the mixture components, which are often interpreted as state

probabilities. They must satisfy
q

K

k=1
fĩt,k = 1. Furthermore, m̃t,k and ‡̃

2

t,k
are the annualized

component-specific mean and variance parameters.

Our second important approximation is a Taylor-series expansion for the logarithm of the un-

known stochastic discount factor function m
ú
t,· . In particular, we rely on the second-oder approxi-

mation

ln m
ú
t,· (x) = —t,· ≠ “t x ≠ ”t x

2
. (10)

This specification obviously includes an exponential a�ne pricing kernel as a special case (”t =

0), which follows from standard assumptions in asset pricing models and is known as “Esscher

transform” in the actuarial literature (Gerber and Shiu, 1996).21,22 Furthermore, it allows for U-

shaped pricing kernels that have been found in empirical studies for equity and, in particular, for

interest rate risk factors (Li and Zhao, 2009; Ivanova and Puigvert Gutiérrez, 2014).

Given the additional structure in equations (9) and (10), the measure change according to

equation (8) boils down to a parameter transformation. It is straightforward to show that the

option-implied physical density resulting from equation (8) is given by (Monfort and Pegoraro,
21See e.g. Rosenberg and Engle (2002) for exponentially a�ne specifications of the projected SDF. In this case,

the asset-specific parameter “t is related to the agent’s relative risk aversion.
22Accordingly, Monfort and Pegoraro (2012) refer to the specification in equation (10) as the “second order Esscher

transform”.
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2012)

ft,· (x) =
Kÿ

k=1

fit,k Ï(x; · mt,k, · ‡
2

t,k), (11)

where

· mt,k =
· m̃t,k + · ‡̃

2

t,k
“t

1 ≠ 2 ”t · ‡̃2

t,k

, ·‡
2

t,k =
· ‡̃

2

t,k

1 ≠ 2 ”t · ‡̃2

t,k

(12)

and

fit,k =
fĩt,k W (“t, ”t, ·m̃t,k, · ‡̃

2

t,k
)

q
K

j=1
fĩt,j W (“t, ”t, ·m̃t,j , · ‡̃2

t,j
)
. (13)

The function W is the so-called Second-Order Laplace Transform. For the normal distribution, it

corresponds to23

W (“, ”, m, ‡) = 1Ô
1 ≠ 2 ” ‡2

exp
5 1

1 ≠ 2 ”‡2

3
m “ + 1

2 “
2

‡
2 + m

2
”

46
. (14)

According to (11)-(13), “t determines the magnitude of a risk premium that is applied to the state

specific location parameters (similar to the adjustment under Black-Scholes assumptions) and ”t

determines a scaling factor that is applied to the mean and variance parameters.

For the calibration of the parameters of the risk-neutral density fĩt = (fĩt,1, . . . , fĩt,K), m̃t =

(m̃t,1, . . . , m̃t,K) and ‡̃t = (‡̃t,1, . . . , ‡̃t,K) from equation (9) and the parameters of the discount

factor function “t as well as ”t from equation (10), we implement the following two-step approach

for a given number of mixture components K.

We first maximize the fit between model prices p
mix

t,i
according to equation (6) and the cor-

responding market prices p
obs

t,i
for i = 1, . . . , m. More specifically, we transform these prices into

implied volatilities denoted by iv(pmix

t,i
) and iv(pobs

t,i
) and minimize the Mean Squared Error. For-

mally, we solve

min
fĩt,m̃t,‡̃t

1
m

mÿ

i=1

1
iv(pobs

t,i ) ≠ iv(pmix

t,i )
2

2

(15)

23See Monfort and Pegoraro (2012, Appendix A). For ” = 0, W simplifies to the well-known moment-generating
function of the normal distribution.
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under the restrictions fĩt,k Ø 0 and
q

K

k=1
fĩt,k = 1. In addition, we impose weak constraints on the

range of the state-specific parameters to avoid problems in the numerical optimization.

Second, we determine the SDF parameters with a moment-based methodology that is based on

the gap between the variance under the pricing measure P̃ and the physical measure P. In particular,

we calibrate “t and ”t by matching the option-implied physical variances derived from (9) to a

series of benchmark forecasts based on past risk factor realizations.24 In particular, we minimize

the relative squared errors between these variances for a selection of forecasting dates s = 1, . . . , R,

while taking into account M option cross sections with time to maturity ·k, k = 1, . . . , M , at each

date. Formally, we solve

min
“t,”t

1
R M

Rÿ

s=1

Mÿ

k=1

A
‡

2

s,mix
(·k)

‡2

s,bench
(·k) ≠ 1

B
2

, (16)

where ‡
2

s,mix
(·k) and ‡

2

s,bench
(·k) denote the implied variance forecast and the benchmark variance

forecast at time s for the time horizon ·k. The choice of relative instead of absolute errors assigns

similar weights to periods with di�erent levels of volatility.25 We implement this approach with a

growing calibration window, i.e., we use all forecasting dates s Æ t for the variance matching. In

our baseline implementation, we choose EGARCH variance forecasts as benchmark estimates.26

Given the physical distribution parameters, we can easily compute option-implied quantiles

(and thus the VaR) for the mixture distribution. In particular, the p-quantile of Xt,· is obtained

by solving

Kÿ

k=1

fit,k �(Qp[Xt,· ]; ·mt,k, ·‡
2

t,k) = p, (17)

where �( · ; m, ‡
2) denotes the cumulative distribution function of a normal random variable with

mean m and variance ‡
2 (Huggenberger et al., 2018).

24The variance of normal mixture distribution is given by ‡2
t,mix(·) =

qK

k=1 fit,k

!
mt,k· ≠

qK

k=1 fit,kmt,k·
"2

+qK

k=1 fit,k·‡2
t,k.

25This is particularly relevant for our interest rate application due to substantial changes in the interest rate level
over our sample period.

26Details on the implementation of our benchmark forecasts are provided in Section V of the Online Appendix.
For our baseline analysis, we use an EGARCH-specification with standard normally distributed innovations and a
growing window to estimate the model parameters.
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3.2 Implied Interest Rate Tail Risk

To apply the proposed methodology for the extraction of long-term interest rate risk, we rely on the

prices of swaption contracts. In particular, we choose the change in the n-year swap rate between

time t and t + · as risk factor, i.e., we set Xt,· = �S
n
t,· := S

n
t+· ≠ S

n
t , where S

n
t is the swap rate of

a contract with a maturity of n years starting at time t.27 We propose to extract the distribution

of �S
n
t,· from swaptions with expiry at t + · . Swaptions, which are typically traded in large and

liquid over-the-counter markets, are among the most important interest rate derivatives (Trolle and

Schwartz, 2014).

There are two basic types of swaption contracts: The holder of a payer swaption has the right

(but not the obligation) to enter into an n-year payer swap at time t + · with the fixed rate YS ,

which is referred to as the swaption strike. Similarly, the holder of a receiver swaption has the

right to enter a receiver swap at the swaption maturity. To determine the payo�s of such contracts

at time t + · , di�erent conventions are used for so-called USD-swaptions and EUR-swaptions. We

focus on EUR-swaptions for our analysis. The payo� of a EUR payer swaption with strike YS and

yearly payments starting at time t + · is given by

v(Sn

t+· ) = (Sn

t+· ≠ YS)+

nÿ

i=1

1
(1 + Sn

t+·
)i

, (18)

and the payo� of the corresponding receiver swaption is equal to

v(Sn

t+· ) = (YS ≠ S
n

t+· )+

nÿ

i=1

1
(1 + Sn

t+·
)i

. (19)

The intuition behind these payo�s is that a flat yield curve with an interest rate equal to the swap

rate S
n
t+· is used for discounting.28 An important implication for our analysis is that the EUR-

swaption payo�s can be written as measurable functions of the single risk factor Xt,· = �S
n
t,· due

to S
n
t+· = S

n
t +�S

n
t,· . Accordingly, we can apply the methodology outlined in Section 3.1 to obtain

27Swap rates are the fixed rates at which market participants enter into a swap contract without making initial
payments. These rates are typically close to spot rates derived from government bond yields for the same matu-
rity. Interestingly, the so-called Solvency II “basic interest rate term structure” is based on swap rates rather than
government bond yields whenever possible (European Commission, 2014, Article 44).

28In contrast, USD-swaptions use a selection of spot rates for discounting the swap payments. Some authors argue
that the di�erences from these conventions are negligible (see Trolle and Schwartz (2014, p. 2316) and Brigo and
Mercurio (2006, pp. 243)), so that our methodology can potentially be extended to USD-swaptions.

13



option-implied estimates for the physical distribution of swap rate changes over the period [t, t + · ]

for di�erent maturities n.

For this purpose, we impose the normal mixture assumption from equation (9) on �S
n
t,· and

derive an approximate closed-form solution for swaption prices under this assumption in Section III

of the Online Appendix.29 Given a selection of market prices30 for payer and receiver swaptions with

di�erent swaption strikes, we determine the risk-neutral mixture parameters of �S
n
t,· by solving

the minimization problem described in equation (15). The transformation of prices into implied

volatilities that we apply in this step is based on so-called “normal implied volatilities” following

standard market conventions.31 Given the estimates of the risk neutral distribution parameters, we

apply the moment matching according to equation (16) to obtain estimates of the SDF parameters

“t and ”t.

With these results, we calculate quantile forecasts for swap rate changes from equation (17).

Using the behavior of quantiles under monotonic deterministic transformations (Föllmer and Schied,

2011, p. 488), we also obtain the corresponding forecasts for the level of the swap rate at t + · .

To make the results comparable to the spot rate shocks used in Solvency II, a deterministic spread

between swap and spot rate can be considered32, i.e., we assume that

R
n

t+· = S
n

t+· ≠ ct, (20)

where R
n
t+· is the n-year spot rate at time t + · and ct is a (small) deterministic but possibly

time-dependent spread. Using this relationship and again exploiting the transformation behavior

of quantiles, we obtain quantile approximations for the future spot rate and spot rate changes.

3.3 Implied Equity Tail Risk

To implement our methodology for the measurement of long-term equity risk, we choose Xt,·

as the logarithmic return of the relevant stock market index. Formally, we set Xt,· = Ut,· =
29We make use of this approximation formula because we are not aware of an exact analytical pricing formula for

EUR-swaptions in the case of normal mixtures and we want to avoid Monte Carlo pricing, which would make the
calibration computationally highly demanding.

30Details on our datasets are provided in Section 4.1.
31Details on the implementation of this conversion are provided in Online Appendix II.
32The approximation (20) is motivated by (i) the close relationship between swap and spot rates with the same

maturity and (ii) by the Solvency II approach. We refer to the discussion in Appendix A.
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log It+· ≠ log It, where It denotes the level of a stock market index at time t.

With this choice, we can largely follow the methodology proposed by Huggenberger et al. (2018)

and extract the risk-neutral index return distribution from the prices of standard index put and

call options for a range of strike prices. Since we typically do not observe prices for options with

exactly one year to maturity (· = 1), we select cross sections of index options whose maturities ·1

and ·2 are close to the one year horizon with ·1 < 1 and ·2 > 1.33 We then apply the methodology

outlined in Section 3.1 as follows.

For the calibration of the risk-neutral parameters, we use midquotes as market prices and

compute model prices under the mixture assumption given by equation (9). This calibration is

done for each cross-section separately. To implement the pricing in the equity case, we add the

assumption of a constant risk-free rate over [t, t + · ], so that we can work with standard results

for put and call prices (see, e.g., Melick and Thomas, 1997 and Huggenberger et al., 2018 for the

mixture case).34 Market and model prices are transformed into implied volatilities using the Black-

Scholes model (Andersen et al., 2017). We solve the minimization problem given in equation (15)

subject to the standard martingale constraint that can be rewritten as

Kÿ

k=1

fĩt,k exp
3

(≠r
f

t
+ qt + m̃t,k + 1

2 ‡̃
2

t,k) ·

4
= 1, (21)

where r
f

t
and qt are the annualized risk-free rate and the annualized dividend yield over [t, t + · ].

Following the previous literature on option-implied equity return distributions (Rosenberg and

Engle, 2002; Bliss and Panigirtzoglou, 2004; Liu et al., 2007), we implement a linear specification

of log m
ú
t,· for the equity case.35 We estimate the parameter “t by solving (16) based on the

two cross-sections (M = 2), whereby the benchmark volatility estimates are obtained from daily

index returns. Given these results, we can calculate the implied VaR for the maturities ·1 and ·2

using (17), which we then linearly interpolate to obtain an option-implied VaR-forecast at the one

year horizon.

For a comparison with the Solvency II shocks, the implied VaR on the level of the logarithmic

return is transformed to a percentage VaR. For this purpose, we can again exploit the behavior of
33A detailed description of the data and our filtering procedures will be provided in Section 5.1.
34Furthermore, the forward measure then corresponds to the standard risk neutral measure (Björk, 2009, p. 404).
35The more general quadratic specification of the log-SDF is considered in the robustness analysis.
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quantiles under monotonic transformations. In particular, the discrete index return can be written

as Rt,· = exp(Ut,· ) ≠ 1, which implies

VaR—[≠Rt,· ] = Q—[≠Rt,· ] = 1 ≠ exp(Q1≠—[Ut,· ]). (22)

4 Results for Interest Rate Risk

4.1 Data and Calibration

We obtain our swaption prices from Bloomberg and use the Bloomberg Volatility Cube (Bloomberg,

2018) to aggregate quotes from the available market sources and to convert these composite quotes

consistently into normal implied volatilities even if they are originally quoted in terms of Black

volatilities or prices.36

Market participants only provide quotes for at-the-money (ATM) and out-of-the money (OTM)

swaptions. Thus, quotes for receiver swaptions are available for strikes smaller than the forward

swap rate and quotes for payer swaptions are provided for strikes larger than the forward swap rate.

The ATM volatility is quoted for a straddle position, that is, a portfolio of a receiver swaption and

a payer swaption with the same characteristics and strike prices equal to the forward swap rate.37

We collect quotes for one-year into {5, 10, 20}-year contracts from 01/2006 until 12/2019 with

a monthly frequency.38 Since 2011, we obtain quotes for 11 strikes at each observation date. The

strikes are given by the forward swap rate ±200, ±150, ±100, ±50, ±25 and ±0 basis points.39,40

Based on these quotes, we calibrate two-state mixtures for each observation date by solving the

minimization problem (15).41 In order to convert model prices into implied normal volatilities, we
36We do not use the interpolation or extrapolation features provided by Bloomberg such that our results are purely

based on actual market quotes. Our detailed settings for extracting the data with the Bloomberg Volatility Cube
will be provided upon request.

37See e.g. Trolle and Schwartz (2014, p. 2313) for further details.
38Quotes for one-year swaption maturities and swap tenors of 5, 10 and 20 years, as well as many other combina-

tions, are quoted on a daily basis. In contrast to equity options, we always get quotes for a fixed time to maturity,
that is, exactly one year in our case.

39Before 2011, the quotes for ±150 basis points are not provided.
40Analyzing reports by the TriOptima trade repository, Trolle and Schwartz (2014, Section 1.2) document that

long-dated swaptions are actively traded. Furthermore, they find that ATM contracts tend to be most liquid and
argue that OTM contracts also trade frequently since they are often used to hedge embedded options in callable
bonds and structured products.

41Because of the relatively small number of prices, we cannot easily increase the number of states for our interest
rate analyses.
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follow the approach implemented by Bloomberg, that is, the conversion is based on the normal

pricing formula presented in Appendix II.42 To investigate whether the calibration of two-state

models works reliably with eleven quotes, we run Monte-Carlo simulations, in which we generate

option prices for the strikes that are typically available from a fully specified two-state model for

the swap rate. The results presented in Section IV of the Online Appendix suggest that the char-

acteristics of the calibrated distributions are in most cases largely similar to the true distributions

used for the price simulation.

Based on the calibrated two-state mixture models, we determine the time-varying and maturity-

specific SDF parameters “t and ”t by solving the minimization problem (16).43 For determining

the benchmark volatilities, daily swap rates from Bloomberg are used. Figure 1 shows the resulting

forward risk-neutral and physical densities for the 10-year rate on two selected dates as well as the

log ratios of these densities. It illustrates that the calibrated projected pricing kernels can exhibit

U-shaped patterns in line with the results in Li and Zhao (2009) as well as Ivanova and Puigvert

Gutiérrez (2014).

4.2 Option-Implied Estimates and Benchmarks

We first present option-implied quantile estimates for the level of the one-year ahead 5-, 10- and

20-year rates over time. The evolution of the corresponding 0.5%- and 99.5%-quantiles together

with the level of the spot rates are shown in Figure 2. This figure documents a substantial time-

variation in the quantiles that largely follows the level of the interest rates and it reveals pronounced

asymmetries in the extracted interest rate distributions. During the first half of our sample, the

gap between the current spot rate and the 0.5%-quantile of the future spot rate distribution is much

wider than the gap between the current rate and the 99.5%-quantile. Di�erences are particularly

pronounced during the financial crisis. This is reversed during the second half of the sample

period when the gap between the current rate and the upper quantile of the future rate increases.

Furthermore, the results for the three maturities are structurally similar. Therefore, we mainly

focus on results for the 10-year rates in the following analysis.

Given the pronounced asymmetries, we separately investigate risk estimates for interest rate
42In line with Bloomberg, we use zero bond prices which are based on EUR swap rates.
43We apply a growing estimation window starting with 84 observations, which corresponds to the first half of our

sample. The SDF parameters applied for the first years of our data are thus in-samples estimates.
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Figure 1: This figure shows the risk-neutral and the physical density functions of the one-year ahead 10-year rate
as well the (log-)ratios of these densities on two selected forecasting days. The risk-neutral distributions are modeled
as normal mixtures with two components, whose parameters are extracted from swaption prices. The log-SDF is
approximated by a quadratic function and its parameters are calibrated by matching the physical one-year interest
rate variance to EGARCH benchmark forecasts.

18



2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

≠2

0

2

4

6

8

Panel A: Implied Quantiles for the 5-Year Rate

Q
imp
0.995[R

5
t+1]

spot rate (r
5
t )

Q
imp
0.005[R

5
t+1]

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

≠2

0

2

4

6

8

Panel B: Implied Quantiles for the 10-Year Rate

Q
imp
0.995[R

10
t+1]

spot rate(r
10
t )

Q
imp
0.005[R

10
t+1]

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

≠2

0

2

4

6

8

Panel C: Implied Quantiles for the 20-Year Rate

Q
imp
0.995[R

20
t+1]

spot rate(r
20
t )

Q
imp
0.005[R

20
t+1]

Figure 2: This figure shows the 0.5%- and 99.5%-quantiles of the one-year ahead interest rate. The quantiles are
calculated based on physical option-implied distributions that are extracted with two-state mixture models and a
quadratic (log-)pricing kernel. We show quantiles for the 5-, 10- and 20-year EUR rates as well as the corresponding
spot rates. Numbers are in per cent.

19



decreases and increases. In line with the 99.5%-VaR objective in Solvency II, we calculate implied

downward and upward shocks that are defined as 0.5%- and 99.5%-quantiles of the change �R
n
t,1

in

the spot rate over one year, i.e., we consider Q0.005[�R
n
t,1

] and Q0.995[�R
n
t,1

].44 Summary statistics

for the upward and downward shocks to the 10-year rates from 01/2006 until 12/2019 are reported

in Table 1 and the evolution of these shocks over time is shown in Figure 3. Similar statistics for

the 5- and 20-year rates are provided in the Appendix. To improve comparability of the results,

descriptive statistics for the downward shocks are reported in absolute values.

The average option-implied upward shock for the 10-year rate is equal to 2.01%. Over our sample

period, the implied upward shocks range between 0.97% and 2.97%. For the implied downward

shocks, we document a time-series average of 1.39% and a range between 0.63% and 2.83%. The

time-series variation of our quantile estimates mirrors the asymmetries of the implied spot rate

distributions documented in Figure 2. As can be seen from Figure 3, the magnitude of downward

interest rate shocks is much larger during the first half of our sample period, whereas the upward

shocks are larger during the low interest rate period starting after the financial crisis.

Next, we compare our option-implied risk estimates to shocks that are calculated according to

the Solvency II standard formula (see Appendix A). The Solvency II upward shocks range between

1.00% and 2.12% with a time-series average of 1.26%. Accordingly, the average and the range of

the Solvency II upward shocks are smaller than the corresponding values for our option-implied

estimates. Di�erences are particularly pronounced during the second half of our sample period,

when the option implied estimates are often more than twice as large as the Solvency II upward

shocks. For the downward shocks, we find that the magnitude of the regulatory shocks is always

smaller than the magnitude of the implied quantile estimates with the average of the Solvency II

values being only 0.70%. In particular, the magnitude of the Solvency II downward shocks has

been extremely small since 2015 and has reached its lower bound of zero in the second half of 2019,

when the 10-year spot rate became negative. Finally, the monthly changes in the upward shocks

for our implied method and the two Solvency II benchmarks are negatively correlated whereas we

document positive correlations for the downward shocks.

As a second benchmark for our option-implied risk estimates, we consider the revised Solvency II
44We assume a time-invariant spread between the spot rate and the corresponding swap rate in (20). This implies

that the change in the one-year spot rate �Rn
t,1 is equal to the change in the swap rate �Sn

t,1.
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Table 1: Interest Rate Risk – 10-Year Rate

Panel A: Upward Shocks
avg std min q25 med q75 max

imp 2.01 0.57 0.97 1.67 2.10 2.47 2.97
Solvency II 1.26 0.35 1.00 1.00 1.00 1.52 2.12
Solvency II* 1.73 0.45 0.97 1.32 1.64 2.13 2.56
norm-month 1.70 0.13 1.44 1.63 1.74 1.80 1.85
EGARCH 1.42 0.18 0.99 1.31 1.39 1.51 2.19
Vasicek 0.92 0.26 0.35 0.91 1.02 1.07 1.27

Panel B: Downward Shocks (abs.)
avg std min q25 med q75 max

imp 1.39 0.62 0.63 0.85 1.16 1.83 2.83
Solvency II 0.70 0.47 0.00 0.28 0.61 1.12 1.56
Solvency II* 1.52 0.60 0.50 0.97 1.40 2.05 2.63
norm-month 1.70 0.13 1.44 1.63 1.74 1.80 1.85
EGARCH 2.13 0.24 1.67 1.96 2.12 2.23 2.96
Vasicek 0.53 0.10 0.12 0.49 0.52 0.56 0.91

Panel C: Upward Shocks - Correlations (chg.)
(a) (b) (c) (d) (e) (f)

(a) imp 1.00
(b) Solvency II -0.46 1.00
(c) Solvency II* -0.58 0.74 1.00
(d) norm-month 0.33 -0.29 -0.19 1.00
(e) EGARCH 0.22 -0.15 -0.04 0.20 1.00
(f) Vasicek 0.14 -0.19 -0.11 0.39 0.17 1.00

Panel D: Downward Shocks - Correlations (chg.)
(a) (b) (c) (d) (e)

(a) imp 1.00
(b) Solvency II 0.35 1.00
(c) Solvency II* 0.33 0.99 1.00
(d) norm-month -0.06 0.19 0.19 1.00
(e) EGARCH 0.15 -0.29 -0.31 -0.21 1.00
(f) Vasicek -0.08 0.09 0.09 0.38 -0.10 1.00

This table reports summary statistics for upward and downward shocks to the 10-year spot rate calculated at the
end of each month of our sample period between 2006 and 2019. The shocks are constructed to be in line with
the 99.5%-VaR objective, i.e., they correspond to the 0.5%- and the 99.5%-quantiles of the change in the spot rate
over one year. We report results for our option-implied approach relying on two-state mixtures and a quadratic
(log-)SDF (imp), the current Solvency II standard formula (Solvency II) and the revised Solvency II methodology
(Solvency II*). Furthermore, we include a Gaussian benchmark based on monthly data (norm-month). Additionally,
we report results for simulation-based EGARCH quantile forecasts with normally distributed innovations as well as
tail risk forecasts based on the Vasicek model. We refer to Section V in the Online Appendix for details on the
benchmark methods. For each methodology, we report the time-series average (avg), the standard deviation (std),
the minimum (min), the 25%-quantile (q25), the median (med), the 75%-quantile (q75) and the maximum (max).
We also report correlations for monthly changes in upward and downward shocks. Statistics for the downward shocks
are reported in absolute values. Shocks are measured in percentage points.
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Figure 3: Panel A shows the upward and downward shocks for the 10-year spot rate according to the option-
implied approach (implied), the current Solvency II standard formula (Solvency II) and the recent revision of the
standard Solvency II methodology (Solvency II*). Formally, these shocks correspond to the 0.5%-quantiles and the
99.5%-quantiles of the change in the interest rate over a one-year horizon. The swaption-implied estimates are based
on two-state mixture models and a quadratic (log-)SDF. Panel B compares the option-implied risk estimates with
a Gaussian benchmark based on monthly data (norm-month) and simulation-based quantile estimates based on an
EGARCH model (see Section V in the Online Appendix for the details). Numbers are in percentage points.
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methodology (EIOPA, 2020). First, we observe that the revised shocks are almost always larger

than the shocks according to the current Solvency II rules. On average, the di�erences to our option-

implied methodology therefore become smaller. The impact of the revised proposal is particularly

large for interest rate decreases: the average downward shock more than doubles from 0.70% to

1.52%. And the new downward shocks are overall much closer to our option-implied quantiles as

can be seen from Figure 3.

Motivated by the SST methodology (Finma, 2017), we include quantile estimates that are

derived from 10 years of monthly interest rate changes with a normality assumption and square

root of time scaling.45 The average level of the resulting symmetric quantile estimates is 1.70%,

which is also closer to the option-implied counterparts than to the results obtained from the current

Solvency II standard formula. However, the symmetry and the low responsiveness to changing

market conditions cause substantial di�erences to our option-implied estimates over time.

We also consider benchmark forecasts derived from an EGARCH-specification.46 Di�erences to

our implied benchmark have become particularly apparent since 2011. During the second half of

our sample period, EGARCH upward shocks are lower than our option-implied estimates, whereas

the EGARCH downward shocks are much stronger than the corresponding option-implied risk

forecasts.47

Finally, we derive tail risk forecasts based on the Vasicek (1977) model. For this model, we find

the lowest average upward (0.92%) and downward shocks (0.53%). Vasicek-based upward shocks

are close to the Solvency II shocks for the second half of our sample period.

4.3 Risk-Neutral Results and Robustness

In this section, we investigate the impact of the measure change on our results. Panel A of Figure 4

compares option-implied quantile estimates for the change in the 10-year rate under the forward

risk-neutral measure and under the physical measure. It reveals that the e�ect of the measure

change on the left and the right tail can be rather di�erent and that the overall impact of the

measure change is time-varying. In particular, we document a strong e�ect on the probabilities of

rate increases during the first half of our sample period.
45Details on the implementation of our benchmark estimators are presented in Appendix V.
46Details are provided in Section V of the Online Appendix.
47Besides the EGARCH specification, we also analyzed other GARCH-type models and found similar results.
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Figure 4: This figure shows the option-implied upward and downward shocks to the 10-year spot rate calculated
at the end of each month of our sample period between 2006 and 2019. The shocks are constructed to be in line
with the 99.5%-VaR objective, i.e., they correspond to the 0.5%- and the 99.5%-quantiles of the change in the spot
rate over one year. Panel A compares the option-implied physical shocks (imp) with the corresponding shocks under
the risk-neutral measure (imp-rn). Panel B shows the results of our robustness checks where we apply the following
variations with respect to the determination of the SDF parameters based on (16). First, we replace the growing
estimation window by a rolling window (imp-roll). Second, we implement the moment-matching technique based
on volatilities instead of variances (imp-vol-error). Third, we replace the baseline EGARCH variance forecasts by
simple model-free variance forecasts based on daily data (imp-hist) and by simulation-based forecasts derived from
GARCH(1,1)-models. Numbers are in percentage points.
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Given this importance of the measure change for the probability mass in the tails of the phys-

ical distribution, we finally examine the robustness of our methodology for calibrating the SDF

parameters “t and ”t. First, we use a rolling estimation window with 84 observations instead of

the growing window procedure. Second, we apply the moment matching in equation (16) on the

level of volatilities instead of variances. Third, we replace the EGARCH benchmark variance fore-

casts by model-free realized variance forecasts based on daily data and by variance forecasts from

GARCH(1,1)-models.48 As can be seen from Panel B of Figure 4, our risk forecasts for the 10-year

rate are relatively stable under these variations. The average upward (downward) shocks for the

10-year rate only range between 1.85 and 2.04 (1.27 and 1.40) across di�erent implementations of

the moment matching.49

5 Results for Equity Risk

5.1 Data and Calibration

We use options on the Eurostoxx 50, the S&P 500 and the FTSE 100. We collect prices for

all available strikes at observation dates between 01/2006 until 12/2019 with a monthly frequency

from Datastream. For each index and each date, we select two option cross sections with maturities

·1 < 1 and ·2 > 1.50 We use Bloomberg dividend yield estimates and EUR-, USD- and GBP-Libor

rates from Datastream.51,52

We then apply the following standard filters across the strike range: (i) We only keep out-

of-the-money (OTM) options. (ii) We delete options violating no-arbitrage constraints. (iii) We

delete contracts with extreme moneyness levels. Following Andersen et al. (2015), we measure the

moneyness of a contract in terms of its at-the-money Black-Scholes implied volatility, i.e. we define

m = log(Y/Ft,· )
· ivatm

bs

, (23)

48We again refer to Section V in the Online Appendix for more details on the benchmark variance forecasts.
49Summary statistics for the corresponding tail risk time series are presented in Table VI.1 in the Online Appendix.
50For the FTSE, we remove the June cross sections if the time to maturity is larger than 1 year since the number

of prices and the moneyness range are often relatively small.
51The Libor rates only exist for maturities Æ 1 year. For options with maturities longer than 1 year, we use the

1-year rate.
52Other studies using long-term equity options include Collin-Dufresne et al. (2012) and Bakshi et al. (2000,

Table 1).

25



where Y and · are the strike price and the time to maturity of the given option contract, Ft,· is

the time-t price of a futures contract with maturity t + · and ivatm is the Black-Scholes implied

volatility of the at-the-money option contract. Using this moneyness measure, we restrict our

sample to options with ≠8 Æ m Æ 5. (iv) Similar to Andersen et al. (2017), we also delete options

that violate no-arbitrage relations across the strike range.

After applying these filters, we have on average 65 prices per calibration date and cross-section

for the Eurostoxx 50, 60.5 prices for the S&P 500 and 48.5 prices for the FTSE. In total, we

use more than 50 000 option prices for the analyses. Across all months in our sample period, the

average minimum moneyness as defined in equation (23) is m = ≠5.2 for the FTSE 100 and roughly

-7.0 for the Eurostoxx 50 and the S&P 500. Figure VI.2 in the Online Appendix illustrates some

characteristics of our option data set for the Eurostoxx 50.

Finally, we use daily Eurostoxx 50, S&P 500 and FTSE 100 log-returns from Datastream in

order to estimate the SDF parameter “t based on the methodology explained in Section 3.3. As

for the interest rate case, we apply a growing estimation window and use in-sample estimates for

the first half of our sample. The magnitudes of the “t estimates are relatively similar for the

three indices. The Eurostoxx 50 and the S&P 500 estimates both range between 1.6 and 2.0. The

FTSE 100 estimates are slightly higher and range between 2.1 and 2.5.

5.2 Option-Implied Estimates and Benchmarks

In our equity risk analysis, we focus on the left tail and report equity shocks that are consistent with

the 99.5%-VaR, i.e., the 0.5%-quantile of the (discrete) return distribution multiplied by minus one.

Our option-implied quantile estimates and selected benchmarks are presented in Figure 5. Summary

statistics are reported in Table 2.

We start with a comparison of the option-implied tail risk estimates for the three markets

depicted in Panel A of Figure 5. We find the highest average estimate for the Eurostoxx 50

index (47.76%) followed by the S&P 500 (45.52%). The average implied VaR for the FTSE 100

is somewhat lower with an average value of 42.97%.53 The option-implied VaR forecasts exhibit

a substantial variation over time with values ranging from 38.41% to 62.33%. Not surprisingly,

changes in the implied tail risk levels are positively correlated across markets with all indices
53The FTSE 100 has a relatively large exposure to conservative sectors such as consumer staples and health care.
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Table 2: Equity Risk

Panel A: Solvency II
avg std min q25 med q75 max

Solvency II without SA 39.00 0.00 39.00 39.00 39.00 39.00 39.00
Solvency II with SA 38.41 6.04 29.00 33.88 38.66 42.96 49.00

Panel B: Eurostoxx 50
avg std min q25 med q75 max

imp 47.76 5.14 38.41 43.99 47.10 51.01 62.33
imp-SA 47.17 3.65 37.44 44.47 47.36 49.97 55.32
norm-month 38.71 2.37 32.94 36.84 38.25 41.02 41.67
EGARCH 46.03 3.13 38.23 44.74 46.28 48.09 53.64
GARCH-emp 52.43 5.71 42.81 49.48 51.61 53.75 74.85

Panel C: S&P 500
avg std min q25 med q75 max

imp 45.52 5.79 31.01 42.51 45.17 48.83 62.47
imp-SA 44.92 3.55 37.66 42.27 44.37 47.47 54.28
norm-month 32.96 1.68 28.42 32.19 33.09 34.05 35.47
EGARCH 42.94 4.90 36.12 39.59 41.85 45.16 63.33
GARCH-emp 47.79 12.52 34.81 39.15 43.43 51.72 96.33

Panel D: FTSE 100
avg std min q25 med q75 max

imp 42.97 5.01 32.55 39.36 42.13 45.62 58.42
imp-SA 42.38 3.46 32.58 40.23 41.85 44.68 51.08
norm-month 31.76 1.67 26.70 30.83 32.11 32.65 34.36
EGARCH 39.18 2.86 32.50 37.75 38.96 40.39 49.66
GARCH-emp 42.97 6.17 35.20 39.63 41.42 43.93 77.74

Panel E: Correlations (chg.)
(a) (b) (c) (d) (e) (f) (g)

(a) Solvency II 1.00
(b) imp-Eurostoxx -0.63 1.00
(c) imp-S&P -0.60 0.81 1.00
(d) imp-FTSE -0.58 0.72 0.72 1.00
(e) imp-SA-Eurostoxx 0.27 0.56 0.37 0.26 1.00
(f) imp-SA-S&P 0.29 0.34 0.59 0.28 0.71 1.00
(g) imp-SA-FTSE 0.10 0.37 0.40 0.75 0.53 0.58 1.00

This table reports summary statistics for the monthly time series of equity shocks from 2006 until 2019. The shocks
are constructed to be in line with the 99.5%-VaR objective over a one-year horizon. We compare the option-implied
estimates based on three-state mixture models and a linear (log-)SDF (imp) with the Solvency II standard formula.
We also analyze option-implied shocks combined with the Solvency II symmetric adjustment (imp-SA). Additionally,
the following time series benchmarks are considered (without SA): a Gaussian benchmark with monthly data (norm-
month) as well as forecasts from GARCH- and EGARCH-models estimated with daily data. For the latter, the
simulation is based on the empirical distribution of the fitted innovations (GARCH-emp). For each series, we report
the average (avg), the standard deviation (std), the minimum (min), the 25%-quantile (q25), the median (med), the
75%-quantile (q75) and the maximum (max). These numbers are in per cent. Panel E shows correlations for monthly
changes in the tail risk estimates.
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Figure 5: The figure depicts equity return shocks that are consistent with the 99.5%-VaR over one year. Panel A
shows the Solvency II baseline shock without the symmetric adjustment and the shocks according to our option-
implied approach for the Eurostoxx 50, the S&P 500 and the FTSE 100. Panel B shows the option-implied estimates
for the Eurostoxx 50 combined with the symmetric Solvency II adjustment as well as the shocks according to the
Solvency II standard formula (with SA). Panel C compares the option-implied Eurostoxx 50 estimates with the
following time-series methods: A Gaussian benchmark based on monthly data (norm-month) and simulation-based
(E)GARCH-benchmarks. Numbers are in percentage points.
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attaining their lowest risk levels in 2006 and their highest levels during the financial crisis.

Overall, the option-implied shocks are mostly larger than the static Solvency II baseline shock

of 39.00% as can be seen from Panel A in Figure 5. The average di�erences lie between 3.97

percentage points for the FTSE and 8.76 percentage points for the Eurostoxx 50. However, the

di�erences attain almost 25 percentage points during the financial crisis.

The relatively large time-variation of the implied equity shocks is substantially reduced by

applying the Solvency II symmetric adjustment factor. For the implied shocks, this counter-cyclical

adjustment dampens the increase in tail risk during crisis periods and it raises the shock levels

during calm periods.54 Interestingly, the adjusted option-implied estimates are much less volatile

than the (adjusted) Solvency II shocks according to the standard formula as can be seen from the

standard deviations reported in Table 2. By construction, the adjustment has almost no impact on

the time-series averages.

Inspired by the SST, we again include the Gaussian benchmark based on rolling estimation

windows with monthly data.55 These benchmark estimates are on average around ten percent-

age points lower than the option-implied estimates. Furthermore, by construction, the Gaussian

estimates are more stable over time.

Comparisons of the option-implied tail risk measures with GARCH-based risk forecasts depend

on the specific implementation of the time-series models. Whereas the average tail risk forecasts

from EGARCH models with Gaussian innovations are somewhat lower than the average option-

implied estimates, the average VaR-levels predicted with Filtered Historical Simulation (Barone-

Adesi et al., 1998) are greater than or equal to the option-implied estimates. Furthermore, the

GARCH-based long-term tail risk estimates also exhibit a substantial degree of variation over time,

which can be rather extreme for the case of Filtered Historical Simulation.

5.3 Robustness and Risk-Neutral Results

Finally, we present results for selected alternative option-implied equity shocks in Figure 6 for the

Eurostoxx 50.56 A comparison of our results with risk-neutral three-state mixture models shows
54For the Eurostoxx 50, we no longer observe the maximum shock during the financial crisis. Instead, the maximum

level of 55.32% is achieved in 2015.
55See again Section V in the Online Appendix for details on the construction of the benchmark forecasts.
56The corresponding summary statistics are presented in Table VI.2 in the Online Appendix.
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that the measure change is an important component of our methodology for long-term equity tail

risk.

To check the robustness of our results with respect to the specific models that we use to describe

the risk-neutral distributions, we implement our methodology based on two-, four- and five-state

mixture models (instead of the three-state baseline specification). Similar to the interest rate

case, we also analyze the robustness of our SDF calibration by varying its implementation as

follows. First, we implement the matching algorithm based on a rolling instead of a growing

estimation window to identify the SDF parameter. Second, we replace variances by volatilities in

equation (16). Third, we use absolute squared variance errors instead of relative squared errors.

Fourth, we replace the EGARCH benchmark variance forecasts by model-free realized variance

forecasts from daily data and by GARCH(1,1) variance forecasts. We also present the results for

the more general quadratic specification of the (log-)SDF and, finally, we relax our option moneyness

filter by decreasing the lower bound from -8 to -15. Our tail risk estimates are stable with respect

to these variations. We only find somewhat higher average shocks for the more restrictive two-state

specification (52.23%). For the remaining specifications, the average 99.5%-VaR estimates range

between 46.57% and 49.02% and the time series are highly correlated (see Figure 6).

6 Solvency Capital Requirements

6.1 A Forward-Looking Internal Model

To understand the economic significance of the di�erences that we documented in the previous

sections, we now integrate our option-implied shocks in an (partial) internal model and compare

the resulting aggregated SCRs to our benchmark techniques.

Therefore, we propose to replace the Solvency II equity and interest rate shocks presented in

equation (5) by our option-implied counterparts. Formally, the SCR for module i is then determined

based on

SCRi = ≠�BOF | implied-shocki, (24)

where implied-shocki indicates the shock scenario according to our option-implied tail risk es-
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Figure 6: This figure shows the time-series of Eurostoxx 50 shocks from 2006 until 2019. The shocks are constructed
to be in line with the 99.5%-VaR objective over a one-year horizon. We report the option-implied baseline results for
the three-state mixture model and a linear (log-)SDF. Panel A compares risk-neutral and physical results. Panel B
presents the results of our robustness analyses. We show the results for two-, four- and five-state mixture models.
Furthermore, we consider the following variations with respect to the determination of the SDF parameter based on
equation (16). First, we we estimate the SDF-parameter based on a rolling estimation window instead of a growing
window (imp-roll). Second, we implement the moment-matching technique based on volatilities instead of variances
(imp-vol-error). Third, we replace relative variance errors by absolute variance errors (imp-mse). Fourth, we replace
the EGARCH-based variance forecasts by model-free realized variance forecasts (imp-hist) and by GARCH(1,1)
variance estimates (imp-GARCH). Furthermore, we present the results for the more general quadratic specification of
the (log-)SDF (imp-quadratic) and we present the results for the moneyness filter ≠15 < m < 5 (imp-m15). Numbers
are in percentage points.
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timates. For equity risk, the option-implied 99.5%-VaR estimates according to (22) replace the

Solvency II shocks. For interest rate risk, the swaption-implied quantiles are used.57

For all other sub-modules, the standard formula can be applied to determine the respective

capital requirements. Finally, the overall market risk SCR can be calculated based on the square

root aggregation formula (4). This procedure is in line with the default integration technique

proposed in the Delegated Regulation (European Commission, 2014, Article 239).

As an additional benchmark, we also include a partial internal model with shocks under the

assumption of normally distributed equity returns and interest rate changes as proposed in the

context of the SST.

6.2 Market Risk Solvency Capital Requirements

In this section, we compare overall capital requirements for market risk for two stylized life insurance

balance sheets:

Balance Sheet I Balance Sheet II

Stocks 5 Basic own funds 12 Stocks 10 Basic own funds 12

Bonds 5Y 15 Liabilities (10Y) 88 Bonds 5Y 30 Liabilities (10Y) 88

Bonds 10Y 80 Bonds 10Y 60

For ease of interpretation, we set the total market value of the balance sheets to 100. In line

with Braun et al. (2017), we assume a value of 12% for the ratio of free to total assets, which is

defined as the value of basic own funds divided by the balance sheet total. The bond positions are

approximated by positions in 5- and 10-year (default-free) zero-coupon bonds and the liabilities

are approximated by a 10-year zero-coupon bond. These approximations can be justified by a

duration mapping technique (Jorion, 2007) and our choices are largely consistent with the asset

and liability durations considered by Braun et al. (2017). Furthermore, we assume that the stock

position corresponds to an investment in the Eurostoxx 50.

The “low-risk” balance sheet I is characterized by a stock ratio of 5%, which is in line with

current estimates for the German life insurance market.58 Furthermore, the amount invested in the
57Note that interpolation techniques could be used if shocks are required for maturities at which swaption quotes

are not available.
58See https://www.gdv.de/de/zahlen-und-fakten/versicherungsbereiche/kapitalanlagen-24042.
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medium-term 5-year zero-coupon bond is set to 15. For balance sheet II, we assume a stock ratio

twice as high and we also double the amount invested in the medium-term bond. Doing so, we

increase the mismatch between the duration of assets and liabilities, that is, we widen the duration

gap.

The capital requirement for equity risk at time t is given by

SCReq = vstocks · shockeq,t, (25)

where vstocks is the amount invested in stocks and shockeq,t is the time-t equity shock.

The capital requirement for interest rate risk is given by max{SCRint(up); SCRint(down)} with

SCRint(up/down) = v5 + v10 ≠
1
x5,t (1 + r

5,up/down

t
)≠5 + x10,t (1 + r

10,up/down

t
)≠10

2
, (26)

where r
n,up/down

t
is the shocked n-year interest rate at time t, vn is the (net) amount invested in

the n-year bond and xn,t = vn · (1 + r
n
t )n is the (net) number of n-year zero-coupon bonds with

payo� EUR 1 at time t. The overall market risk capital requirement SCRmarket is then calculated

based on the square root aggregation rule (4).

For our analysis, we assume the balance sheets to be equal at each forecasting date. Descrip-

tive statistics for the monthly market risk capital requirements between 01/2006 and 12/2019 are

reported in Table 3 and the corresponding time series are presented in Figure 7. Since we set the

balance sheet total to 100, all numbers are in percent of total assets.

We first discuss the results for balance sheet I. The option-implied capital requirements for

market risk range between 2.02 and 3.00 (per cent of total assets). The average implied SCR is

given by 2.54. The average Gaussian estimate (2.05) and the average Solvency II requirement (2.01)

are lower. The benchmarks clearly show a di�erent variation over time. Whereas the Gaussian

SCRs do not fluctuate much, we observe a pronounced time variation for the Solvency II capital

requirements and for our option-implied approach. However, option-implied capital requirements

and the Solvency II benchmarks sometimes move in opposite directions.

The market risk capital requirements for the second balance sheet are higher reflecting the

larger exposure to stock market and interest rate risk. Implied market risk SCRs range between
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Figure 7: The figure shows the time-series of market risk solvency capital requirements for balance sheet I (Panel A)
and balance sheet II (Panel B). The balance sheet total is always set to 100 and the ratio of free to total assets equals
12%. Results are reported for our option-implied approach taking the standard formula’s symmetric equity adjustment
into account (imp-SA), the normal distribution benchmark based on monthly data (norm-month) and Solvency II.
For Solvency II, we distinguish between the current standard formula and the revised method based on the newly
proposed interest rate shocks (Solvency II*).
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Table 3: Market Risk Capital Requirements

Panel A: Balance Sheet I
avg std min q25 med q75 max

imp-SA 2.54 0.22 2.02 2.40 2.55 2.70 3.00
Solvency II 2.01 0.32 1.50 1.75 1.99 2.23 2.65
Solvency II* 2.14 0.33 1.68 1.88 2.09 2.33 2.88
norm-month 2.05 0.14 1.79 1.91 2.01 2.17 2.27

Panel B: Balance Sheet II
avg std min q25 med q75 max

imp-SA 6.21 0.95 4.51 5.54 6.07 6.83 8.72
Solvency II 4.32 0.59 3.37 3.79 4.25 4.79 5.48
Solvency II* 5.49 0.89 3.94 4.94 5.38 5.96 7.54
norm-month 5.29 0.30 4.67 5.10 5.29 5.51 5.76

This table reports descriptive statistics for the monthly time-series of market risk solvency capital requirements for
balance sheet I (Panel A) and balance sheet II (Panel B). The balance sheet total is equal to 100 and the ratio of
free to total assets equals 12%. Results are reported for our option-implied approach taking the standard formula’s
symmetric equity adjustment into account (imp-SA), the normal distribution benchmark based on monthly data
(norm-month) and Solvency II. For Solvency II, we distinguish between the current standard formula and the revised
method based on the newly proposed interest rate shocks (Solvency II*; see EIOPA, 2020, p. 31 f.). For each series, we
report the average (avg), standard deviation (std), minimum (min), 25%-quantile (q25), median (med), 75%-quantile
(q75) and the maximum (max).

4.51 and 8.72. The average implied capital requirement is equal to 6.21 and is thus more than

40% higher than the average Solvency II capital requirement (4.32). Compared to balance sheet I,

we document larger di�erences between the current Solvency II approach and the proposal for the

revised standard formula. As for the first balance sheet, the implied SCRs are highest during the

financial crisis and remain above average in the years after. In contrast, Solvency II SCRs are

below their average in this period.59 The average Gaussian SCR is equal to 5.29 and thus between

the average requirements according to the option-implied approach and the current Solvency II

standard formula.

7 Conclusion

This paper examines the measurement of long-term market tail risk. For this purpose, we propose

a new option-based methodology and implement this approach in the Solvency II framework for
59Note that we do not account for equity losses during this period because we consider equal balance sheets at

each observation date.
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interest rate and equity risk. We compare our option-implied VaR forecasts to shocks derived from

the Solvency II standard formula and to estimates from traditional statistical methods relying on

past risk factor changes.

Our general methodology combines a normal mixture model for the risk-neutral distribution

of risk factor changes with a quadratic approximation of the (log-)projected SDF. We extract

the required distribution parameters from current option prices and rely on a variance matching

technique for calibrating the SDF parameters. In particular, we recover the distribution of interest

rate changes from one-year into n-year swaptions and use standard index options with a time-to-

maturity close to one year for the estimation of one-year equity VaRs for three important markets.

During our sample period from 2006 - 2019, the interest rate shocks according to the current

Solvency II standard formula are often substantially lower than the corresponding option-implied

shocks. Interestingly, our option-implied estimates are closer to the recent EIOPA proposal on

revising the standard formula (EIOPA, 2020) and to shocks that are derived from Gaussian bench-

marks calibrated to past interest rate changes. Similarly, the average level of Solvency II equity

shocks tends to be somewhat lower than the average level of the option-implied equity VaRs. Fur-

thermore, we document a pronounced variation in the option-implied equity tail risk estimates over

time, which is correlated with the tail risk changes predicted by GARCH-type models but less

extreme compared to popular implementations such as Filtered Historical Simulation.

By integrating our option-implied estimates into a partial internal model, we illustrate that the

documented di�erences between regulatory and option-implied tail risk estimates can be economi-

cally important as they have a substantial impact on solvency ratios in our examples.

Our findings suggest that option-implied methods can help to address a key challenge in de-

termining capital requirements for market risk over long holding periods, which is the lack of

su�cient data of price changes over longer horizons. Given this advantage, option-implied long-

term risk estimates might add valuable insights for recalibrating the market capital requirements

of the Solvency II standard formula. Furthermore, the proposed technique might be an interest-

ing alternative for internal risk management practices as well as for the Own Risk and Solvency

Assessments (ORSA). Finally, time-varying option-implied risk estimates can potentially improve

forward-looking investment strategies of insurance companies and pension funds.
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A Solvency II: Interest Rate and Equity Risk

In this section, we provide more details on the equity risk and the interest rate risk sub-module of

the Solvency II standard formula.

The rules for the equity risk module are set out in the Articles 168-173 of the Delegated Regu-

lation (European Commission, 2014).60 There is a distinction between type 1 and type 2 equities.

All equities that are listed in countries of the European Economic Area or the OECD are assigned

to type 1. In this paper, we only consider type 1 equity investments that are neither of strate-

gic nature nor classified as long-term investments.61 For such exposures, the capital requirement

corresponds to the loss in basic own funds that results from an instantaneous equity price shock,

whose magnitude is 39% + SAt, where SAt is the time dependent symmetric adjustment factor.

The calculation of SAt is addressed in Article 172 of the Delegated Regulation. The adjustment

factor is restricted to be in between ≠10% and +10%, which implies that the downward-shocks

range between 29% and 49%. EIOPA publishes current and historical symmetric adjustment factors

for a representative equity portfolio.62 The adjustment factor is constructed in a way such that the

capital requirement tends to be larger in rising equity markets and lower in falling markets. It is

a macroprudential tool that can help to avoid fire sales and thus a further destabilization during

stress periods (EIOPA, 2014, 2017, 2018c).

As already mentioned before, the capital requirement for interest rate risk is given by

SCRint = max{SCRint(up), SCRint(down)}. (27)

SCRint(up) is the loss in basic own funds from the upward shock in the term structure of interest

rates as defined in Article 166. The upward shocks are given by

�r
up

n = max{rn · s
up

n ; 1.00%}, (28)

60Note that Article 169 has been modified and Article 171a has been added recently (European Commission, 2019).
61For strategic and long-term investments, separate rules apply resulting in lower capital requirements. Several

criteria must be fulfilled such that an investment can be classified as a strategic (European Commission, 2014,
Article 171) or a long-term investment (European Commission, 2019, Article 171a).

62https://eiopa.europa.eu/regulation-supervision/insurance/solvency-ii-technical-information/symmetric-
adjustment-of-the-equity-capital-charge
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where s
up

5
= 55%, s

up

10
= 42%, s

up

20
= 26% and rn is the current n-year spot rate. Thus, the minimum

upward shock is always equal to one percentage point.

Similar as before, SCRint(down) is equal to the loss in basic own funds caused by a downward

shock in the risk-free term structure as described in Article 167. For the downward shocks, it holds

that

�r
down

n = max{rn · s
down

n ; 0}, (29)

where s
down
5

= 46%, s
down
10

= 31% and s
down
20

= 29%. The downward shock is thus equal to zero for

negative spot rates.

Recently, EIOPA (2020) proposed adjusted shocked rates. The corresponding upward shocks

can be computed as follows

�r
upı

n = (rn · (1 + s
upı

n ) + b
upı

n ) ≠ rn = rn · s
upı

n + b
upı

n , (30)

where s
upı

5
= 45%, s

upı

10
= 30%, s

upı

20
= 25%, b

upı

5
= 1.58%, b

upı

10
= 1.05% and b

upı

20
= 0.88%. For

the new downward shocks, it holds that

�r
downı

n = rn ≠ max{rn · (1 ≠ s
downı

n ) ≠ b
downı

n ; ≠1.25%}, (31)

where s
downı
5

= s
downı
10

= 40%, s
downı
20

= 50%, b
downı
5

= 0.71%, b
downı
10

= 0.61% and b
downı
20

=

0.5%. An important di�erence between the current and newly proposed downward shocks is the

introduction of the additive absolute shock b
downı
n , which appears to have a strong impact in periods

with low interest rates.

For the empirical analysis, we use spot rates rn that are derived from a set of EUR swap rates

by bootstrapping. These rates are directly provided by Bloomberg. Doing so, we slightly deviate

from the Solvency II approach which is based on the Smith/Wilson model.63 By comparing the

bootstrapped spot rates from Bloomberg with the risk-free rates published by EIOPA for selected

dates, we find very similar values. Finally, it is worth mentioning that we do not take volatility

adjustments to the basic risk free rates into account (European Commission, 2014, Articles 49-51).

63We refer to Lageras and Lindholm (2016) and Jørgensen (2018) for details on the Smith/Wilson model.
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B Further Results

Table B.1: Interest Rate Risk – Further Results

Panel A: Upward Shocks – 5Y
avg std min q25 med q75 max

imp 2.35 0.47 1.25 2.12 2.48 2.67 3.21
Solvency II 1.36 0.54 1.00 1.00 1.00 1.57 2.82
Solvency II* 2.34 0.72 1.34 1.71 2.09 2.87 3.89
norm-month 1.91 0.16 1.50 1.82 1.92 2.04 2.11
EGARCH 1.62 0.30 1.18 1.38 1.58 1.78 2.50

Panel B: Downward Shocks (abs.) – 5Y
avg std min q25 med q75 max

imp 1.23 0.63 0.51 0.68 1.02 1.64 3.19
Solvency II 0.79 0.73 0.00 0.13 0.52 1.31 2.36
Solvency II* 1.39 0.64 0.50 0.82 1.17 1.85 2.76
norm-month 1.91 0.16 1.50 1.82 1.92 2.04 2.11
EGARCH 2.15 0.32 1.55 1.94 2.13 2.32 3.12

Panel C: Upward Shocks – 20Y
avg std min q25 med q75 max

imp 2.07 0.86 0.88 1.39 1.96 2.78 4.02
Solvency II 1.05 0.09 1.00 1.00 1.00 1.06 1.33
Solvency II* 1.56 0.35 0.89 1.25 1.52 1.90 2.16
norm-month 1.66 0.30 1.19 1.39 1.79 1.94 2.03
EGARCH 1.39 0.15 0.92 1.32 1.41 1.47 1.82

Panel D: Downward Shocks (abs.) – 20Y
avg std min q25 med q75 max

imp 1.34 0.74 0.11 0.69 1.36 1.95 2.87
Solvency II 0.79 0.41 0.02 0.43 0.74 1.18 1.48
Solvency II* 1.86 0.71 0.53 1.23 1.78 2.54 3.05
norm-month 1.66 0.30 1.19 1.39 1.79 1.94 2.03
EGARCH 2.25 0.22 1.80 2.07 2.27 2.38 3.01

This table reports summary statistics for upward and downward shocks to the 5-and 20-year spot rates calculated
at the end of each month of our sample period between 2006 and 2019. The shocks are constructed to be in line
with the 99.5%-VaR objective, i.e., they correspond to the 0.5%- and the 99.5%-quantiles of the change in the spot
rate over one year. We report results for our option-implied approach relying on two-state mixtures and a quadratic
(log-)SDF (imp), the current Solvency II standard formula (Solvency II) and the revised Solvency II methodology
(Solvency II*). Furthermore, we include a Gaussian benchmark based on monthly data (norm-month) and we report
results for simulation-based EGARCH quantile forecasts. For each methodology, we report the time-series average
(avg), the standard deviation (std), the minimum (min), the 25%-quantile (q25), the median (med), the 75%-quantile
(q75) and the maximum (max). Summary statistics for the downward shocks are in absolute values. Numbers are in
percentage points.
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Online Appendix

Option-Implied Solvency Capital Requirements

Abstract: This Online Appendix consists of six sections. Section I provides details for the

derivation of the general relationship between risk-neutral and physical densities. Sec-

tion II presents standard pricing results for swaptions which are used for the conversion

between prices and implied volatilities. Section III presents an approximation formula

for swaption prices and tests its accuracy. These approximations are applied within our

calibration approach for interest rate risk and Section IV examines the robustness of this

calibration. In Section V, we provide details on the implementation of our benchmark

models. Finally, Section VI contains further empirical results.



I Measure Change

In this section, we explain how equation (8) is obtained from the pricing results in equations (6)

and (7). Assuming that Xt,· has a density f̃t,· with respect to the forward risk-neutral measure P̃,

we obtain from equation (6)

pt,i = Bt,·

⁄
vi(x) f̃t,· (x) dx. (I.1)

Similarly, equation (7) implies

pt,i =
⁄

m
ú
t,· (x) vi(x) ft,· (x) dx, (I.2)

where ft,· denotes the density of Xt,· with respect to the physical measure P. These two pricing

results hold for any payo�. Comparing the integrals in the equations (I.1) and (I.2), we then obtain

Bt,· f̃t,· (x) = m
ú
t,· (x) ft,· (x) (I.3)

and thus

ft,· (x) = 1
mú

t,·
(x)Bt,· f̃t,· (x). (I.4)

Due to the normalization of density functions, it holds that

1 =
⁄

ft,· (s) ds = Bt,·

⁄
f̃t,· (s)
mú

t,·
(s) ds. (I.5)

Using this result, we can eliminate Bt,· in equation (I.4) and obtain equation (8).
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II Normal Pricing Formulas

In this section, we report the pricing formula for USD-swaptions which are typically used to convert

between prices and implied (normal) volatilities also for EUR-swaptions. For the normal model,

we get the following prices for · -year into n-year payer and receiver swaptions:64

fiP S(t) = A
·,n

t
[(ŝ·,n

t
≠ YS)�(d) + ‡norm

Ô
· Ï(d)] and (II.1)

fiRS(t) = A
·,n

t
[(YS ≠ ŝ

·,n

t
)�(≠d) + ‡norm

Ô
· Ï(d)], (II.2)

where Ï is the pdf of the standard normal distribution and

d = ŝ
·,n

t
≠ YS

‡norm

Ô
·

. (II.3)

Furthermore, A
·,n

t
=

q
n

i=1
Bt,·+i where Bt,n is the time-t price of a n-year zero-coupon bond with

payo� 1 and

ŝ
·,n

t
= Bt,· ≠ Bt,·+n

A
·,n

t

. (II.4)

ŝ
·,n

t
is referred to as the forward swap rate, which is the fixed rate that implies a zero present value

of the underlying swap at time t. At the maturity of the swaption, the forward swap rate is equal

to the spot swap, that is, ŝ
·,n

t+·
= S

n
t+· (Trolle and Schwartz, 2014).

The underlying assumption in the normal model is that the forward swap rate evolves according

to the stochastic di�erential equation (Milliman, 2015)

dŜ
·,n

t
= ‡normdWt, (II.5)

where Wt is a standard Brownian motion under the specific risk neutral measure that uses A
·,n

t
as

the numeraire (“annuity measure”).65 This implies that the spot swap rate S
n
t+· at time t + · , is

normally distributed with an expected value equal to the forward swap rate ŝ
·,n

t
.

64See Milliman (2015).
65See e.g. Trolle and Schwartz (2014) for details.
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III Swaption Price Approximation

In this section, we derive approximation formulas for the prices of payer and receiver swaptions in

a mixture model and test its accuracy in a simulation study. For simplicity, we directly set · = 1 in

this section. To obtain closed form solutions, we propose to replace the unknown future “discount

rate” in (18) and (19) by the current spot swap rate. The modified payo�s are then given by

(Sn

t+1 ≠ YS)+

nÿ

i=1

1
(1 + Sn

t
)i

(III.1)

(YS ≠ S
n

t+1)+

nÿ

i=1

1
(1 + Sn

t
)i

, (III.2)

where S
n
t is the spot swap rate at time t. Using these payo�s, the swaption prices are approximated

by

fi
P S

t ¥ Bt,1 Ẽt[(Sn

t+1 ≠ YS)+]
nÿ

i=1

1
(1 + Sn

t
)i

, (III.3)

fi
RS

t ¥ Bt,1 Ẽt[(YS ≠ S
n

t+1)+]
nÿ

i=1

1
(1 + Sn

t
)i

. (III.4)

In line with Section 3.2, we assume that the distribution of �S
n
t,1

= S
n
t+1

≠ S
n
t is a mixture of

normals under the forward risk-neutral measure with parameters fĩ�s
t = (fĩ�s

t,1
, . . . , fĩ

�s

t,K
), m̃�s

t =

(m̃�s
t,1

, . . . , m̃
�s

t,K
) and ‡̃�s

t = (‡̃�s
t,1

, . . . , ‡̃
�s

t,K
). Thus, the swap rate S

n
t+1

is also a mixture of normals

under P̃ with parameters fĩ
s

t,k
= fĩ

�s

t,k
, ‡̃

s

t,k
= ‡̃

�s

t,k
and m̃

s

t,k
= S

n
t + m̃

�s

t,k
for k = 1, . . . , K. At this

point, it is helpful to introduce the state variable Vt with P̃t(Vt = k) = fĩ
�s

t,k
and �S

n
t,1

|Vt = k ≥

N(m̃�s

t,k
, (‡̃�s

t,k
)2). Using Vt, we obtain

Ẽt[(Sn

t+1 ≠ YS)+] =
Kÿ

k=1

fĩ
�s

t,k Ẽt[(Sn

t + �S
n

t,1 ≠ YS)+|Vt = k], (III.5)

Ẽt[(YS ≠ S
n

t+1)+] =
Kÿ

k=1

fĩ
�s

t,k Ẽt[(YS ≠ S
n

t ≠ �S
n

t,1)+|Vt = k]. (III.6)
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With the Bachelier pricing formula,66 it follows that Ẽt[(Sn
t+1

≠ YS)+] is equal to

Kÿ

k=1

fĩ
�s

t,k

C

‡̃
s

t,k Ï

A
S

n
t + m̃

�s

t,k
≠ YS

‡̃s

t,k

B

+ (Sn

t + m̃
�s

t,k ≠ YS) �
A

S
n
t + m̃

�s

t,k
≠ YS

‡̃s

t,k

BD

(III.7)

and Ẽt[(YS ≠ S
n
t+1

)+] is equal to

Kÿ

k=1

fĩ
�s

t,k

C

‡̃
s

t,k Ï

A
S

n
t + m̃

�s

t,k
≠ YS

‡̃s

t,k

B

+ (YS ≠ S
n

t ≠ m̃
�s

t,k ) �
A

YS ≠ S
n
t ≠ m̃

�s

t,k

‡̃s

t,k

BD

. (III.8)

To assess the quality of these approximations for one-into-ten year swaption contracts, we run

the following simulations: We create N = 1 000 random model parameter sets based on uniform

distributions with fĩ
�s
t,1

œ [0.5; 0.975], ‡̃
�s
t,1

= 0.005, ‡̃
�s
t,2

œ [0.0025; 0.0175], m̃
�s
t,1

= 0, m̃
�s
t,2

œ

[≠0.005; 0.005] and an annually compounded rate between -1% and 2% (for simplicity, we assume a

flat term structure).67 We also generate random strikes (relative to the forward swap rate) from the

set of eleven strikes that are typically o�ered by market participants (see Section 4.1). The selected

strike implicitly defines the contract type (payer/receiver swaption or straddle). For each set of

parameters, we then calculate the relative error in terms of normal implied volatilities compared

to the exact price obtained from Monte-Carlo Simulation. The maximum errors are approximately

equal to ±10% and, for 95% of the simulated prices, errors are between ≠6.9% and +6.9%.

IV Simulation Study Calibration

For interest rate risk, the risk-neutral two-state mixture models are determined by solving the

minimization problem (15). For this calibration, there are typically only eleven swaption quotes

available which is a much smaller number than for the equity case. Furthermore, we make use

of the approximation formulas presented in Section III to avoid Monte Carlo pricing. For ana-

lyzing the accuracy and stability of this calibration procedure, we implement the following test.

In the first step, we randomly generate N risk-neutral mixture models for the one-year swap rate

change following the procedure explained in Appendix III. For each model, the following steps are

performed:
66See e.g. Schachermayer and Teichmann (2008).
67Parameter ranges for the risk-neutral mixtures are motivated by our empirical calibration results.
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Figure IV.1: The figure shows mean (in %), standard deviation (in basis points) and quantiles (in %) for the true
and the re-calibrated distributions of the one-year swap rate change for N = 1 000 randomly chosen parameter sets.

(i) We calculate exact prices by Monte Carlo simulation of one-into-ten year swaptions for the

eleven strikes that are typically available. We transform these prices into implied normal

volatilities.

(ii) We apply our calibration procedure based on the implied volatilities from the previous step.

(iii) We calculate relevant characteristics of the true and the re-calibrated distributions.

Figure IV.1 presents the results of this test. Overall, moments and quantiles are comparable which

supports our calibration procedure.
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V Time-Series Benchmarks

We use the following benchmark estimators for the variance and for selected quantiles of the risk

factor changes over the period [t, t + · ].

As a simple benchmark motivated by the SST (Finma, 2017), we consider rolling window

forecasts based on monthly risk factor data. In particular, we estimate the variance over [t, t + · ]

from 10 years of monthly data according to

‡
2

t,mon(·) = · 12
A

1
120

120ÿ

s=1

(xs,m ≠ µ̂t)2

B

, (V.1)

where (xs,m)s=1,...,120 are the most recent 120 risk factor changes realized before month t and µ̂t is

the sample average of these data. Here, time-scaling is applied to transform the one-month variance

to the time horizon · .

As a second model-free variance estimator, we implement a realized variance forecast based on

252 daily returns, i.e., we estimate the variance for the period [t, t + · ] at the end of month t as

‡
2

t,day(·) = ·

252ÿ

s=1

x
2

s,d, (V.2)

where (xs,d)s=1,...,252 are the 252 most recent daily realizations of the risk factor changes at the end

of month t.

Again motivated by the regulatory approach proposed in Finma (2017), we additionally assume

that the change of a given risk factor is normally distributed with an expected value of zero. Then,

we obtain the simple quantile approximations

Q
mon

t,p [Xt,· ] = �≠1(p) ‡t,mon(·) and Q
day

t,p
[Xt,· ] = �≠1(p) ‡t,day(·) (V.3)

from (V.1) and (V.2), where �≠1(p) denotes the p-quantile of the standard normal distribution.

Moreover, we use GARCH-based variance and VaR-forecasts. In particular, we assume the
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following data generating processes for the daily risk factor changes

Xt = µ + Át with Át = ‡t Zt, (V.4)

‡
2

t = Ê + – Á
2

t≠1 + — ‡
2

t≠1, (V.5)

where Zt ≥ N(0, 1). We also consider the asymmetric EGARCH-model proposed by Nelson (1991).

The corresponding data generating process is given by (V.4) and

ln(‡2

t ) = w + – Át≠1 + “

3
|Át≠1| ≠

Ò
2/fi

4
+ — ln(‡2

t≠1). (V.6)

EGARCH-specifications capture the leverage e�ect which might be advantageous for modeling

volatility dynamics in stock markets and they have also been applied in the context of interest

rates (Li and Zhao, 2009). In all cases, we estimate the parameters with Maximum Likelihood and

update them every month. If not stated otherwise, we use a growing estimation window.

To obtain multiperiod variance and quantile forecasts from the estimated models, we rely on

Monte Carlo simulation. For each forecasting day t, we simulate 10 000 random paths with the

relevant number of trading days. Then, we aggregate the daily risk factor changes into changes over

the time horizon [t, t + · ] and estimate the variance or quantiles from the empirical distribution

of the simulated sample. The forecasts for the horizon [t, t + · ] are denoted by ‡
2

t,(E)GARCH
(·)

and Q
(E)GARCH

t,p
[Xt,· ]. We use standard normal innovations for the simulations or resample the

empirical innovations. The latter approach is known as Filtered Historical Simulation in the risk

management literature (Barone-Adesi et al., 1998).

For the interest rate risk analysis, we use the Vasicek (1977) model as a further benchmark. In

contrast to other short rate models, such as the CIR model, the Vasicek model allows for negative

rates. In this model, the short rate is given by

drt = –(“ ≠ rt) dt + ‡ dWt (V.7)

with a long-term mean level of “, speed of mean reversion –, volatility ‡ and (risk-neutral) Brown-

ian motion (Wt). Following Gatzert and Martin (2012), we assume a zero market price of risk and

also use three-month EURIBOR rates to estimate the model parameters by maximum likelihood es-
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timation.68 The physical quantiles of the one-year spot rate changes are then determined by Monte

Carlo simulations, using closed-form expressions for zero bond prices (Björk, 2009, Prop. 24.3) to

determine the corresponding n-year spot rates.

68A growing estimation window is used and we slightly restrict the mean parameter “ for stability reasons.
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VI Additional Empirical Results

Table VI.1: Interest Rate Risk (10Y) – Robustness and Risk Neutral Results

Panel A: Upward Shocks
avg std min q25 med q75 max

imp 2.01 0.57 0.97 1.67 2.10 2.47 2.97
imp-roll 2.00 0.57 0.97 1.67 2.07 2.40 3.01
imp-vol-error 2.04 0.57 0.98 1.69 2.12 2.52 3.02
imp-hist 1.86 0.48 0.96 1.56 1.88 2.25 2.80
imp-GARCH 1.85 0.62 0.70 1.39 1.99 2.38 2.84

imp-rn 2.38 0.54 1.44 1.94 2.39 2.69 3.96
imp-rn-1s 1.79 0.42 1.15 1.48 1.68 2.10 2.91

Panel B: Downward Shocks (abs.)
avg std min q25 med q75 max

imp 1.39 0.62 0.63 0.85 1.16 1.83 2.83
imp-roll 1.40 0.61 0.68 0.86 1.15 1.83 2.83
imp-vol-error 1.40 0.63 0.62 0.85 1.17 1.84 2.84
imp-hist 1.27 0.47 0.65 0.86 1.09 1.62 2.47
imp-GARCH 1.36 0.66 0.58 0.77 1.08 1.85 2.92

imp-rn 1.57 0.56 0.84 1.19 1.43 1.78 3.30
imp-rn-1s 1.79 0.42 1.15 1.48 1.68 2.10 2.91

This table reports descriptive statistics of the option-implied upward and downward shocks for the 10-year rate. The
results of our baseline specification (imp) are compared to the modifications described in Figure 4. Additionally,
option-implied risk-neutral results for 1-state mixtures (imp-rn-1s) and 2-state mixtures (imp-rn) are shown. We
report the time-series average (avg), the standard deviation (std), the minimum (min), the 25%-quantile (q25), the
median (med), the 75%-quantile (q75) and the maximum (max). Statistics for the downward shocks are reported in
absolute values. Numbers are in percentage points.
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Table VI.2: Equity Risk – Robustness and Risk Neutral Results – Eurostoxx 50

avg std min q25 med q75 max

imp 47.76 5.14 38.41 43.99 47.10 51.01 62.33
imp-2s 52.23 5.97 41.09 48.77 50.60 56.32 66.73
imp-4s 48.68 5.40 38.60 44.31 47.79 52.44 63.14
imp-5s 48.84 5.37 38.65 44.83 47.96 52.66 62.72
imp-roll 48.75 5.00 38.55 45.99 48.24 51.67 62.77
imp-vol-error 49.02 5.40 39.03 45.01 48.16 52.57 64.28
imp-mse 46.57 4.85 37.75 42.82 46.07 49.56 60.22
imp-hist 47.62 6.57 36.41 42.36 47.19 52.06 64.59
imp-GARCH 47.66 5.13 38.36 43.86 47.01 50.91 62.18
imp-quadratic 48.46 3.32 42.37 45.84 48.19 50.59 58.38
imp-m15 47.76 5.28 38.42 43.87 47.13 51.04 62.36

imp-rn 70.29 9.88 48.51 63.63 68.87 78.52 89.38
imp-rn-1s 50.23 5.99 38.10 44.91 50.56 54.81 65.49

This table reports summary statistics for the monthly time series of Eurostoxx 50 shocks from 2006 until 2019. The
shocks are constructed to be in line with the 99.5%-VaR objective over a one-year horizon. The results of our baseline
specification (imp) are compared to the modifications described in Figure 6. Additionally, option-implied risk-neutral
results for 1-state mixtures (imp-rn-1s) and 3-state mixtures (imp-rn) are shown. For each series, we report the
average (avg), the standard deviation (std), the minimum (min), the 25%-quantile (q25), the median (med), the
75%-quantile (q75) and the maximum (max). Numbers are in percentage points.
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Figure VI.2: The figure presents characteristics of the Eurostoxx 50 option data. Panel A shows the number of
options per observation date that are used for the calibration of the risk neutral distributions. In Panel B, we plot the
range of Black-Scholes implied volatilities in our option samples over time and Panel C shows the moneyness range,
where moneyness is defined by formula (23). cs1 (cs2) refers to the first (second) cross section with · < 1 (· > 1).
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