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1 Introduction

Risk reduction through pooling can be seen as a defining characteristic of the insurance mechanism

from the insurer’s perspective. For example, Houston (1964, p. 538) argues that:

“To the individual, insurance is a device for transferring his risk to the insurer. The

insurer views insurance as a pooling process in which the risk is reduced by increasing

the number of exposure units insured.”

Following this view, the benefits of larger risk pools are typically studied by quantifying the reduc-

tion of the insurer’s risk as measured by its default probability or the relative capital buffer (see,

e.g., Cummins, 1974, 1991). However, if we take potential losses from a default into account, then

the size of the insurance risk pool can also affect the payoffs to policyholders and thus their overall

utility from the above-mentioned risk transfer.1

In this paper, we reinvestigate the benefits of risk pooling from the policyholders’ perspective

under different solvency frameworks. We focus on the case of a stock insurer, which is of special

interest because the benefits of reducing the risk per policy have to be shared between the pol-

icyholders and the owners of the company. This risk allocation can drive a wedge between the

occurrence of pooling benefits for the insurer’s total position and the policyholders’ wealth. Given

the limited liability of equity holders, the default risk that the policyholders have to bear for a

given amount of total risk depends on the equity capital that the owners of the company provide.

We assume that this equity contribution is exogenously determined according to solvency rules and

we consider two cases: minimum capital requirements that are proportional to the total premiums

written and a capital regulation that is based on the Value-at-Risk (VaR). Capital requirements

that are proportional to (net) premiums are an important example for volume-based systems such

as the capital charges for underwriting risk in the United States and the former European Solvency I

framework. The VaR-based rule has become a main component of probabilistic solvency systems

around the world, for example, in the European Solvency II framework.2

1Several studies have argued that policyholders are highly sensitive to non-performance risks of insurance contracts.
Cf. the discussion in Froot (2007) and the literature on “probabilistic insurance” (see, e.g., Wakker et al., 1997; Zimmer
et al., 2018) for empirical results. This also applies to markets with guaranty funds whose protection is often only
incomplete and associated with additional transaction costs (see Cummins and Sommer, 1996, p. 1075 or Cummins
and Weiss, 2016, p. 130).

2Holzmüller (2009) and Cummins and Phillips (2009) provide reviews of the solvency regulation in the United
States and in Europe. See Geneva Association (2016) for the results of a recent global survey.
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Our baseline analysis relies on the following main assumptions: For the risks being insured, we

only require homogeneity and finite expectations. Homogeneity is formalized by assuming that the

random losses are exchangeable, which includes independent and identically distributed losses as a

special case. The finiteness of expectations is necessary to evaluate the resulting wealth positions

within an expected utility framework. We apply a second degree stochastic dominance criterion to

obtain utility comparisons that are consistent with the preferences of risk-averse agents across a wide

range of decision models. Default losses for policyholders are modeled endogenously by comparing

the total claim amount to the level of the available reserves (equity capital and premiums) following

ideas developed by Merton (1974) and Doherty and Garven (1986). Furthermore, we do not apply

a specific pricing model but take the insurance premium as exogenously given. Finally, we assume

that the policyholders are offered full coverage and that the total default loss from a given pool is

shared equally among the policyholders.

These assumptions are sufficient to generate monotonically increasing benefits of risk pooling on

the pool level. More specifically, the riskiness of the average claim per policyholder is non-increasing

in the pool size under the given assumptions, in line with the general notion that diversification

reduces risk. However, we demonstrate that the resulting effect on the policyholders’ utility depends

on the form of capital regulation due to the asymmetric risk sharing between policyholders and

equity holders.

Under a simple volume-based solvency framework in which the equity capital is proportional to

the premiums, the pooling benefits for policyholders are consistent with the overall risk reduction.

In particular, we show that the policyholders’ utility level is non-decreasing in the pool size so that

all risk-averse policyholders at least weakly prefer insurance in larger risk pools.

In contrast, the occurrence of a risk reduction on the pool level does not necessarily translate

into utility gains for policyholders if the amount of equity capital is determined using the VaR.

Although, by construction, a VaR-based equity capital limits the probability of default, the rela-

tionship between the pool size and the policyholders’ utility level depends on the distribution of the

risks that are pooled. Varying the distributional assumption on the losses, we illustrate that the

policyholders’ utility level can be (i) globally increasing, (ii) locally decreasing or even (iii) globally

decreasing in the size of the risk pool. We then derive a condition that is necessary and sufficient

for non-negative pooling benefits under a VaR-based regulation. In particular, our results relate
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a preference for larger risk pools to a decrease in the excess tail risk of the average claim as mea-

sured by the difference between Average Value-at-Risk (AVaR) and VaR. In addition, we provide

sufficient conditions on the joint distribution of individual risks, which imply that the excess tail

risk condition for the average claim of the pool is satisfied.

Finally, we investigate a case in which the policyholders also own an equity stake in the insurance

company. In this case, the effect of risk pooling on the policyholders’ utility is always nonnegative

– independent of the form of the minimum capital requirements.

We then discuss several extensions of our baseline analysis: First, we take a variable expense

loading into account and confirm the intuition that cost benefits can reinforce risk-related pooling

benefits or compensate pooling-related utility losses resulting from increases in excess tail risk.

Moreover, we demonstrate that the benefits of risk pooling are robust to introducing independent

investment risk if the equity capital is proportional to the premiums. To obtain a corresponding

result under VaR-based capital requirements, we have to impose an additional shape restriction

on the distribution of the investment return. We then study the special case of independent

risks, which allows us to relax our full coverage and equal loss sharing assumptions and to derive

sufficient conditions for utility gains from risk pooling with more general contract types and with

alternative sharing rules for the total default loss. Next, we extend our analysis to heterogeneous

risk pools and derive extensions of our results for risks with differences in expected losses and

different levels of dispersion. Finally, we show that a risk-based premium which reflects the default

risk of the company can at least partly resolve the adverse effects documented for VaR-based capital

requirements and distributions that do not satisfy our excess tail risk condition.

Our analysis is related to the literature on the benefits of risk pooling and diversification.

As mentioned above, several authors have studied the relationship between the size of the risk

pool and the insurer’s risk, often applying asymptotic arguments that build on the law of large

numbers or the central limit theorem (see, Houston, 1964; Cummins, 1974, 1991; Smith and Kane,

1994 among others). However, the impact of risk pooling on the policyholders’ utility has so far

mainly been investigated in the mutual insurance case. In particular, Gatzert and Schmeiser (2012)

and Albrecht and Huggenberger (2017) show that policyholders benefit from risk pooling in this

setting by exploiting that mutual insurance companies attain a complete sharing of profits and

losses independent of premiums or capital reserves. Due to this insight, the analysis of the mutual
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insurance case is related to general results on diversification benefits for risk-averse decision makers

(Samuelson, 1967; Rothschild and Stiglitz, 1971).3 For the case of stock insurers, we are only aware

of the recent work by Schmeiser and Orozco-Garcia (2021) who compare pooling benefits in mutual

and stock insurance companies focussing on conditions under which policyholders attain the same

utility levels from both organizational forms.4 We extend the previous literature by providing a

general analysis of pooling benefits for policyholders in stock insurance companies. This analysis

reveals that risk pooling can have a negative impact on the policyholder’s utility under a VaR-based

regulation.

Given this finding, our work complements a number of recent studies that highlight adverse

effects of diversification. Ibragimov (2009) shows that diversification can increase the overall VaR

when pooling risks with extremely heavy tails.5 Ibragimov et al. (2009) document the occurrence of

“diversification traps” in reinsurance markets, which are due to locally decreasing utility levels from

diversification with, again, heavy tailed risks. Furthermore, Ibragimov et al. (2011) demonstrate

that the optimal level of diversification from the perspective of financial intermediaries can have

adverse welfare implications. An important common feature of Ibragimov et al. (2011) and our

analysis is that limited liability can cause adverse diversification effects for a group stakeholders.

In addition, Ibragimov et al. (2011) also emphasize the relevance of distributional characteristics for

their findings: so called “diversification disasters” only occur with fat-tailed risks in their model.6

In contrast, our excess tail risk condition can also be violated when pooling light-tailed risks.

Moreover, our work is related to the economic literature on the role of default risk for the optimal

design and the pricing of insurance contracts. In particular, our analysis of the policyholder’s utility

under default risk complements the work of Doherty and Schlesinger (1990) and subsequent studies

(Cummins and Mahul, 2003; Mahul and Wright, 2004, 2007) that document how well-known results

on optimal insurance purchasing have to be modified if indemnity payments are subject to default
3Cf. also Eeckhoudt et al. (1993), who study the interaction between diversification and insurance from the

perspective of risk-averse decision makers.
4See also Laux and Muermann (2010) or Braun et al. (2015) and the references therein for previous comparisons

of mutual insurance and stock insurance companies along different dimensions.
5Ibragimov and Walden (2007) obtain similar results for random variables with bounded support that are gener-

ated by truncating heavy-tailed distributions. Note that the VaR-based diversification limits documented with this
approach do not apply in a utility-based analysis (with concave utility functions).

6See also Ibragimov et al. (2015) for a comprehensive review of the effects of heavy-tailedness on diversification
and the related literature.
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risk.7 In addition, our endogenous modeling of default losses is related to the contingent claim

approach for pricing default risk (Doherty and Garven, 1986; Cummins, 1988).8 Despite these

similarities, the focus of our analysis is different: We study the impact of risk pooling on the

policyholder’s utility losses from default – taking insurance prices as well as the offered form of

coverage as given.

Finally, our results add to the literature on the optimal design of solvency regulation. While

risk-sensitive capital requirements for insurance companies have a number of important advantages

compared to volume-based frameworks (Cummins et al., 1993; Holzmüller, 2009), our analysis

highlights the potential problem of the risk-based approach that a reduction of the capital buffer

per policy for larger portfolios can adversely affect the policyholder’s utility. Moreover, our results

contribute to the ongoing debate on the adequacy of VaR for setting capital requirements. On

the one hand, VaR has been heavily criticized because it is not always subadditive (Artzner et al.,

1999) and does not sufficiently reflect the risk of extreme losses.9 On the other hand, Dhaene

et al. (2008) demonstrate that strong subadditivity can be undesirable for the determination of

capital requirements since it can increase the shortfall risk after a merger. Building on this insight,

they characterize the subadditivity level of VaR as “efficient”.10 We add a stakeholder-specific

perspective to this debate by demonstrating that VaR-based capital requirements can reduce or

even eliminate diversification benefits for the policyholders of stock insurers. Interestingly, this

effect is not related to a lack of subadditivity in our examples but rather in line with the criticism

of subadditivity by Dhaene et al. (2008).

We proceed as follows: Section 2 introduces our main assumptions and our decision-theoretic

approach for evaluating pooling benefits. In Section 3, we present our baseline results on the

benefits of risk pooling under full coverage and an equal sharing of default losses. In Section 4, we

investigate selected extensions of our baseline analysis. Section 5 concludes. All proofs are given

in the Appendix. An Online Appendix presents complementary results.
7Recently, Reichel et al. (2021) investigate optimal insurance demand when policyholders are able to diversify

default risk across several insurance companies.
8Furthermore, our methodology for sharing the default loss between policyholders is related to ideas that have

been applied to the pricing of default risk in multiline insurance companies (Phillips et al., 1998; Myers and Read,
2001; Ibragimov et al., 2010).

9Cf., for example, Dowd and Blake (2006) for a comprehensive review of VaR and its alternatives with a focus on
insurance applications.

10In addition, Kou and Peng (2016) recently show that VaR satisfies an alternative set of axioms and emphasize
the robustness of VaR compared to risk measures that are more sensitive to extreme tail events.
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2 Decision Framework

In this section, we present our baseline assumptions, the solvency standards that we consider and

the methodology used for general utility comparisons.

2.1 Baseline Assumptions

We study a one-period model with n agents, n ∈ N. Agent i possesses the deterministic initial wealth

w0,i at time t = 0 and faces a single risk with the potential loss Xi at time t = 1, i = 1, . . . , n.

To simplify the exposition, we assume that the risk-free rate is zero.11 Without insurance, the

end-of-period wealth of agent i is then given by

Wi = w0,i −Xi. (1)

For the distribution of the losses, we mainly rely on the following assumption:

Assumption A1 The losses (X1, . . . , Xn) are exchangeable with E[|Xi|] <∞ for all i = 1, . . . , n.

Exchangeability means that (X1, . . . , Xn) d= (XΠ(1), . . . , XΠ(n)) for all permutations

(Π(1), . . . ,Π(n)) of the indices (1, . . . , n) (McNeil et al., 2015, p. 234).12 This implies that the

marginal distributions of the losses are identical. Assumption A1 thus captures the notion of a ho-

mogeneous risk pool in a rather general way. In particular, it includes the important special case of

identically distributed and independent risks (IID). Compared to this special case, exchangeability

allows for positive dependence. With respect to the marginal distributions, Assumption A1 does

only require that the risks are absolutely integrable, but it does not restrict our analysis to specific

parametric models.13

In our baseline analysis, we focus on insurance policies that offer full coverage:14

Assumption A2 Agent i can buy full coverage of her loss Xi for the risk premium π > 0, i =

1, . . . , n.
11This assumption can easily be relaxed and does not affect our main conclusions.
12Cf., e.g., Denuit and Vermandele (1998) as well as Albrecht and Huggenberger (2017) and the references therein

for actuarial applications of exchangeable random variables.
13Usually, it holds that Xi ≥ 0. However, we do not need this additional restriction for our general analysis.
14Alternative types of contracts will be studied in Section 4.3.
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We take the risk premium π as given and only impose the weak restriction π > 0.15 In addition,

we assume that every agent is offered the contract at the same price, i.e. πi = π, which is a

natural assumption for identically distributed risks. Furthermore, Assumption A2 implies that the

premium does not vary with the number of policies sold. This is an important simplification in

our baseline analysis that allows us to focus on a single channel through which pooling affects

the policyholder’s utility. Furthermore, it allows us to compare the policyholder’s position across

different pool sizes without having to assume a specific functional form that determines how the

premium depends on the size of the risk pool.16

If agent i is able to buy an insurance policy that is not subject to default risk, her end-of-period

wealth at t = 1 satisfies17

W s
i = w0,i − π. (2)

This wealth position does not depend on the size of the risk pool, which is a crucial difference

to the mutual insurance case, where the size of the pool directly affects the distribution of the

policyholders’ wealth as a result of their profit participation (Gatzert and Schmeiser, 2012; Albrecht

and Huggenberger, 2017).

However, the simple position in equation (2) neglects that the funds of the insurance company

are usually limited and that it might not be able to cover all claims at t = 1. We refer to insurance

policies that are subject to this kind of default risk as vulnerable contracts (Johnson and Stulz, 1987;

Cummins and Mahul, 2003) and we let Di,n denote the default loss of policyholder i, who bought

insurance from a company with a total portfolio of n policies.18 The final wealth of policyholder i

from buying a vulnerable contract is then given by

Wi,n = w0,i − π −Di,n. (3)

Our approach for modeling the distribution of Di,n relies on the assumption that all contracts
15We thus avoid restricting the validity of our results to specific pricing rules. Note that while π > 0 is sufficient

for our formal analysis, tighter restrictions on the premium can usually be derived based on economic arguments.
Such economic restrictions on the premium will be discussed in Section 3.5.

16As important generalizations of this baseline assumption, we will investigate variable expense loadings that
depend on the size of the risk pool and an endogenous premium that varies with the default risk of the insurance
company in Sections 4.1 and 4.5.

17Accordingly, we do not consider additional sources of risk, such as random initial wealth of the decision maker (Do-
herty and Schlesinger, 1983).

18Here, n is the total size of the risk pool including the contract of policyholder i.
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are offered by a stock insurance company with limited liability. If the company sells n policies, its

total claim amount can be calculated as

Sn =
n∑
i=1

Xi. (4)

The funds available to cover these claims are the premium payments made by the policyholders

and the equity capital that the owners of the insurance company provide at t = 0. The premiums

correspond to nπ and the total equity available for a portfolio of size n is denoted by cn. Due to

the limited liability of the owners, default occurs if and only if

Sn > cn + nπ. (5)

In this setting, the default probability for a pool of size n satisfies

PDn = P[Sn > cn + nπ] (6)

and the total default loss is given by

Ln = max(Sn − cn − nπ, 0). (7)

Ln is the amount missing for fully covering all claims from the contracts in the pool. We thus work

with default losses that are endogenously caused by high claim amounts.19 −Ln = −max(Sn −

cn − nπ, 0) corresponds to the payoff of the well-known default option, which the policyholders

implicitly sell to the owners of the company.20

For most of our analysis, we assume that policyholders and owners are distinct groups.21 To

fully describe the impact of default on the individual policyholder’s wealth, it then remains to define

a rule for sharing the total default loss Ln from equation (7) among the policyholders.22 A natural
19In Section 4.2, we introduce investment risk as an additional source of default losses.
20The idea of using contingent claim pricing to analyze corporate debt goes back to Merton (1974). In an insurance

context, it has been introduced by Doherty and Garven (1986) and Cummins (1988).
21A combined policyholder and owner position will be investigated in Section 3.4.
22By dividing the total excess loss among the policyholders, we implicitly assume that the policyholders’ claims

are not protected by a guaranty fund. In Section 4.3, we will introduce a more general modeling of individual default
losses that allows for partial compensation by a guaranty fund.
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first choice is an equal distribution of Ln.23 In this case, every policyholder’s wealth is reduced by

L̄n := 1
n
Ln. (8)

In our setting with identically distributed losses, this corresponds to an “ex ante” sharing rule24,

which splits the total default loss according to the policyholders’ contribution to the total expected

loss. If we assume that the policyholders are homogeneous with respect to their initial wealth

and their risk preferences, an equal allocation of the default loss among policyholders can further-

more be shown to be the linear allocation with the highest aggregate expected utility across all

policyholders.25

If we denote the average claim per policyholder by S̄n := Sn/n and the available equity capital

per policyholder by c̄n := cn/n, then equation (8) can be rewritten as L̄n = max(S̄n − c̄n − π, 0).

The formal implications of the previous discussion are summarized in the following assumption:

Assumption A3 The default loss of policyholder i from a risk pool of size n is given by Di,n = L̄n,

i = 1, . . . , n.

Under the Assumptions A2 and A3, we can rewrite the policyholder’s wealth from buying a

vulnerable insurance contract as

Wi,n = w0,i − π − L̄n = w0,i − π −max(S̄n − c̄n − π, 0). (9)

While premiums and the available equity capital are substitutes with respect to controlling the

default probability and the severity of default losses as can be seen from equations (6) and (7),

equation (9) shows that this symmetry is lost when analyzing the policyholder’s wealth. Further-

more, equation (9) reveals that the size of the risk pool affects the policyholder’s wealth under the

given assumptions through two channels: the distribution of S̄n and the available equity capital

per policyholder c̄n. The dependence of the policyholder’s wealth on the size of the risk pool is

an important difference to the case without default risk as it potentially generates benefits of risk
23See, for example, Gatzert and Schmeiser (2012, p. 191) for the equal sharing of the excess loss.
24Cf. Ibragimov et al. (2010) for a discussion of “ex ante” vs. “ex post” sharing rules. We will consider more general

sharing rules in Section 4.3.
25We provide a precise formal statement and a derivation of this risk sharing result as Proposition II.1 in Section II

of the Online Appendix.
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pooling from the policyholders’ perspective beyond the mutual insurance case.

2.2 Capital Regulation

To understand the effect of different solvency rules, we assume that the equity capital provided

by the owners exactly corresponds to the minimum capital requirement for a given pool size. In

particular, we investigate the benefits of risk pooling under the following two solvency rules.

First, we consider the case in which the risk capital cn is proportional to the total premiums

written nπ, which captures volume-based solvency frameworks like the underwriting risk charges

according to the RBC standards in the United States or the former European Solvency I rules

(Cummins and Phillips, 2009; Holzmüller, 2009). Since we assume a homogeneous pool with an

identical risk premium for all contracts, this type of regulation implies that the minimum equity

capital increases proportionally with the size of the risk pool n, i.e.,

cn = n c. (10)

Equity holders then provide the same amount of equity capital c̄n = c for each contract.

Second, we consider minimum capital requirements that are based on the Value-at-Risk (VaR).

VaR-based capital requirements are a very important component of modern probabilistic solvency

standards in many insurance markets around the world (Geneva Association, 2016, Table 1), such

as the current European Solvency II framework. We define the VaR of the random loss L at the

probability level α as

VaRα[L] = Q1−α[L] (11)

with Qu[X] denoting the u-quantile of the random variable X, i.e., Qu[X] = inf{x ∈ R; P[X > x] ≤

1− u}. Under a VaRα-based capital regulation, the minimum equity capital is calculated as

cn = VaRα[Sn − π n] . (12)

By the definition of the VaRα, this choice of the equity capital ensures that the insurer’s default
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probability does not exceed the probability level α. Note that equation (12) can be rewritten as

c̄n = VaRα

[
S̄n − π

]
, (13)

which typically implies that the equity capital per policyholder varies with the size of the risk pool.

We illustrate this dependence for the simple case of normally distributed risks in the following

example.

Example 1 Suppose that the losses (X1, . . . , Xn) are independent and normally distributed with

Xi ∼ N (µ, σ2) for all i = 1, . . . , n, where σ > 0. Under Assumption A2, we obtain Sn ∼ N (nµ, nσ2)

for the total claim amount and S̄n ∼ N
(
µ, 1

nσ
2
)

for the average claim amount. Therefore, the

available equity capital per policyholder according to equation (13) is given by

c̄n = Q1−α[S̄n]− π = µ− π + Φ−1(1− α) 1√
n
σ (14)

with Φ−1(1− α) denoting the (1− α)-quantile of the standard normal distribution. For α < 0.5, it

holds that Φ−1(1− α) > 0 and the equity capital per policyholder is decreasing in the pool size n.

The negative relationship between the amount of risk capital per policyholder that is required

to maintain a given safety level as measured by the default probability is sometimes interpreted as

a “benefit of risk pooling”.26 However, in the first place, this benefit only applies from the equity

holders’ perspective. Whether this situation is also advantageous for policyholders requires further

investigation.

2.3 Stochastic Orders and Preferences

To study the impact of the pool size n on Wi,n according to equation (3), we rely on the theory of

decisions under risk. Choosing this framework, we implicitly assume that the policyholders cannot

replicate their wealth positions using tradable assets. If a complete replication of the corresponding

positions was possible, their value would correspond to the price of the respective replicating port-

folio. However, it seems reasonable that a typical policyholder does not have access to instruments

which can be used to replicate cashflows depending on the individual losses X1, . . . , Xn.
26See e.g. Gatzert and Schmeiser (2012), who refer to this effect as “case A” risk pooling.

11



More specifically, we use second degree stochastic dominance (SSD) for utility comparisons that

are largely independent of a particular preference specification. Let W1 and W2 denote random

wealth positions. W1 is said to dominate W2 by SSD (W1 �ssd W2) if E[ψ(W1)] ≥ E[ψ(W2)]

for all non-decreasing concave functions ψ such that the expectations exist.27 In the standard

expected utility theory (EUT), this definition directly implies that all risk-averse agents with a

utility function ui satisfying u′i > 0 and u′′i < 0 weakly prefer W1 over W2 if W1 �ssd W2.

Given the limited ability of EUT to explain the findings of the empirical literature on “prob-

abilistic insurance” (Wakker et al., 1997), it is important to note that our SSD analysis is also

consistent with decision theories that incorporate probability weighting. In particular, SSD results

reflect the preferences of risk-averse agents in the rank-dependent expected utility model (Quig-

gin, 1982; Yaari, 1987) if the utility function and the probability weighting function are concave.

Formally, we assume that agent i assigns the value

Vi(W ) =
∫
ui(w) d(gi ◦ FW )(w) (15)

to W , where ui denotes the agent’s utility function with u′i > 0 and u′′i < 0, FW is the cumulative

distribution function of W and gi is an agent-specific probability weighting function with gi(0) = 0,

gi(1) = 1, g′i > 0 and g′′i < 0.28 Then, it follows from Chew et al. (1987) that

W1 �ssd W2 ⇒ Vi(W1) ≥ Vi(W2) . (16)

Further relevant properties of SSD that will be used for analyzing the policyholders’ utility are

summarized in the Appendix.
27Cf. Hadar and Russell (1969) as well as Rothschild and Stiglitz (1970). Our analysis relies on the comprehensive

discussion in Shaked and Shanthikumar (2007, Chapter 4), where SSD is introduced as increasing concave order. See
also Levy (1992) for an extensive review of economic applications.

28Note that this value functional is related to the more general Choquet Expected Utility framework following
Schmeidler (1989). In this framework, our assumption of a concave probability weighting function corresponds to a
convex capacity. A representation of equations (15) and (16) in terms of Choquet Expected Utility can be found in
Albrecht and Huggenberger (2017).
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3 Baseline Results

In this section, we investigate the benefits of risk pooling under the baseline assumptions introduced

in the previous section. First, we briefly describe the impact of risk pooling on the average risk

of an insurance portfolio. Then, we present our main results on the policyholders’ utility for a

proportional growth of the available equity capital in Section 3.2 and for a Value-at-Risk-based

rule in Section 3.3. In these analyses, we assume that policyholders and equity holders are distinct

groups. In Section 3.4, we study the potential benefits of larger risk pools if the policyholders also

provide the equity capital. A discussion of our results is finally provided in Section 3.5.

3.1 The Average Risk of the Pool

Under our baseline assumptions, the intuition that pooling reduces the risk per policyholder can

be formalized as follows.

Lemma 1 Suppose that the losses (X1, . . . , Xn+1), n ∈ N, satisfy Assumption A1 and let S̄n =
1
n

∑n
i=1Xi denote the average loss of (X1, . . . , Xn), then

−S̄n+1 �ssd −S̄n for all n ≥ 1. (17)

This result directly follows from applying Lemma 3.1 in Albrecht and Huggenberger (2017) to

(−X1, . . . ,−Xn+1). Moreover, Lemma 1 is closely related to results in majorization theory.29 Let

a, b ∈ Rn, we say that a is majorized by b and write a ≺ b if
∑k
i=1 a[i] ≤

∑k
i=1 b[i] for k = 1, . . . , n−1

and
∑n
i=1 a[i] =

∑n
i=1 b[i], where x[i] denotes the i-th largest element of x (Marshall et al., 2011,

Definition 1.A.1). Intuitively, a ≺ b formalizes that a is “less spread out” than b (Marshall et al.,

2011, p. 4). Building on this terminology, Lemma 1 can be derived from the relation

( 1
n+ 1 , . . . ,

1
n+ 1 ,

1
n+ 1

)
≺
( 1
n
, . . . ,

1
n
, 0
)

(18)

and results from majorization theory as shown in Section II of our Online Appendix.

Economically, equation (17) states that all risk-averse decision makers prefer the average loss
29See Marshall et al. (2011) for a comprehensive review of this theory. We are grateful to an anonymous referee

for bringing the interesting relation to this literature to our attention.
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from a larger pool to the average loss from a smaller pool. Similar results, in particular for indepen-

dent and identically distributed risks, are frequently exploited in the literature on risk pooling and

diversification and can (at least) be traced back to Samuelson (1967) and Rothschild and Stiglitz

(1971). Please note that the moment condition E[|Xi|] <∞ from Assumption A1 is important for

the validity of such results on diversification benefits because it rules out risks with extremely fat

tails, for which diversification is known to be ineffective or even to increase the risk of a position

(Fama, 1965; Ibragimov, 2009).

To simplify the following presentation, it is helpful to rewrite the result of Lemma 1 in terms

of increasing convex order (Shaked and Shanthikumar, 2007, Chapter 4), which is often referred to

as stop-loss order in the actuarial literature (Denuit et al., 2005, p. 152). X is said to be smaller

than Y in increasing convex order (X �icx Y ) if E[ψ(X)] ≤ E[ψ(Y )] for all non-decreasing convex

functions ψ such that the expectations exist. With this definition, equation (17) is equivalent to30

S̄n+1 �icx S̄n for all n ≥ 1. (19)

Accordingly the average risk of the pool is decreasing in the pool size if “risk” is measured in

terms of increasing convex order.31

In the remaining part of this section, we investigate whether the policyholders whose contracts

are pooled can benefit from this risk reduction on the pool level.

3.2 Volume-Based Capital Requirements

We first focus on a volume-based regulation with a constant amount of equity capital per policy.

In this case, the default loss per policyholder is given by

L̄cn = max(S̄n − c− π, 0) (20)

and we are able to derive the following result.

Proposition 1 Suppose that the Assumptions A1, A2 and A3 hold. If the equity capital per poli-

cyholder is constant c̄n = c, then the utility benefits of risk pooling under default risk are increasing
30The equivalence follows from property i) of Lemma 2 in the Appendix.
31We use “decreasing” for “non-increasing” and “increasing” for “non-decreasing” throughout this article.
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in the pool size, i.e., Wi,n+1 �ssd Wi,n for all n ≥ 1.

Proof: See the Appendix.

Proposition 1 states that risk pooling with a larger number of homogeneous risks is always more

beneficial from the policyholders’ perspective. As a consequence32 of equation (16), all risk-averse

agents with preferences according to equation (15) weakly prefer a larger degree of risk pooling,

i.e.,33

Vi(Wi,n+1) ≥ Vi(Wi,n) for all n ≥ 1. (21)

The benefits for policyholders are thus consistent with the results stated for the average risk of the

pool at the beginning of this section.

The utility gains from insurance with larger risk pools originate from a decrease in the disutility

from default states. In particular, the proof of Proposition 1 shows that

Vi
(
−L̄cn+1

)
≥ Vi

(
−L̄cn

)
for all n ≥ 1. (22)

When drawing economic conclusions from these utility comparisons, it is important to take the

underlying assumptions into account, which focus our analysis on diversification effects. Of course,

deviations from these assumptions, such as differences in the premiums charged, can offset the

diversification benefits that occur in larger pools according to Proposition 1.

Similar to Lemma 1, Proposition 1 is closely related to majorization theory. In particular, an

alternative proof of the proposition is again presented in Section II of our Online Appendix. In the

Online Appendix, we also complement our results for finite n by an asymptotic analysis within the

standard expected utility framework assuming independent risks. The results of this analysis show

that the utility losses from default asymptotically vanish as n→∞ if the reserves per policyholder

(π + c) cover the expected claim amount (see Proposition I.1).

We now illustrate the result of Proposition 1 for selected preference specifications34 and distri-

butional assumptions.35

32This extension from SSD statements to preference relations according to the rank-dependent expected utility
model based on equation (16) equally applies to our following results, but we will confine the remaining discussion
to SSD statements for the sake of brevity.

33Note that establishing a strict SSD relation is not possible as explained in the proof of Proposition 1.
34Our examples rely on the standard expected utility framework that is obtained from equation (15) with gi(p) = p.
35More detailed derivations for the presented examples can be found in the Online Appendix.
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Example 2 Throughout this example, we assume w0,i = 10 for the policyholder’s initial wealth and

c = 1 for the available equity capital per policyholder. We rely on loss distributions with E[Xi] = 2

and use π = 2 so that the premium exactly covers the expected claim.

i) We first consider agents, whose risk preferences are given by the exponential utility function

ui(w) = 1 − exp(−γi · w) with risk aversion parameter γi > 0. According to equation (9), the

expected utility from buying a vulnerable contract can then be written as

E[ui(Wi,n)] = E
[
1− exp

(
−γi (w0,i − π − L̄cn)

)]
= 1− exp (−γi (w0,i − π)) ML̄cn

(γi), (23)

where ML̄cn
is the moment generating function of L̄cn. Furthermore, we again assume normally

distributed and independent risks Xi ∼ N (µ, σ2), i = 1, . . . , n. For this case, we know from

Example 1 that S̄n ∼ N (µ, 1
nσ

2). In the Online Appendix, we use this implication in combi-

nation with results on the partial moment generating function of the normal distribution to

derive a closed-form expression for ML̄cn
(γi). Furthermore, we show that ML̄cn

(γi) is a decreas-

ing function of n, which confirms that E[ui(Wi,n)] is increasing in the pool size. We illustrate

the monotonic increase of the corresponding certainty equivalents in Panel A of Figure 1 for

γi = 0.5, µ = 2 and σ = 4. Furthermore, we include the certainty equivalent of buying a safe

insurance policy and document that the certainty equivalent of Wi,n converges to the level of

the safe contract.36

ii) For the second part of our example, we maintain the preference specification from part i) but we

assume that the risks are independent and follow a Gamma distribution Xi ∼ G(a, b) with shape

parameter a and scale parameter b. This implies that Sn ∼ G(na, b) and S̄n ∼ G
(
na, bn

)
. If

γi <
1
b , the partial moment generating function of the Gamma distribution exists for all n and

we can rely on results derived in the Online Appendix to evaluate the expected utility according

to equation (23). We choose a = 4/3 and b = 3/2 for our illustration. These parameters

imply a lower standard deviation than in the Gaussian example but generate positive levels

of skewness and excess kurtosis for the distribution of the individual losses. The resulting

relationship between n and the certainty equivalent of buying a vulnerable contract is shown in
36See Example I.1 in the Online Appendix for formal results on the limit behavior of the utility losses from default

under the given assumptions.
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Panel B of Figure 1.

iii) Next, we assume that the distribution of Xi is a normal mixture with two components capturing

a low and a high loss state. Formally, we consider

P[Xi ≤ x] = P[Yi = L] Φ(x;µL, σ2
L) + P[Yi = H] Φ(x;µH , σ2

H), (24)

where µL (µH) and σ2
L (σ2

H) denote the location and variance parameters in the low (high) loss

state and Φ( ·; µ, σ2) denotes the cumulative distribution function of a normal distribution with

mean µ and variance σ2. Yi is the state indicator for Xi with P[Yi = L] = pL > 0, P[Yi = H] =

pH > 0 for all i = 1, . . . , n and pL + pH = 1. We assume that the state indicators (Y1, . . . , Yn)

are independent. Then, the losses (X1, . . . , Xn) are also independent and S̄n follows a normal

mixture distribution with n + 1 components as shown in the Online Appendix, where we also

derive a representation of ML̄cn
(γi). Using again equation (23) with γi = 0.5, we illustrate the

resulting relationship between the pool size and the certainty equivalent of buying a vulnerable

contract in Panel C of Figure 1 for µL = 0, µH = 8, σL = σH = 0.1, pL = 3
4 and pH = 1

4 .37

iv) We now modify the mixture structure presented in the previous part of this example such that it

allows for a common crash scenario for all risks in the pool. In particular, we maintain the form

of the marginal distributions shown in equation (24) for the individual losses but we assume

that the state indicators are perfectly dependent, i.e, P[Yi = Yj ] = 1 for all i, j = 1, . . . , n. The

random variables Y1, . . . , Yn can thus be replaced by a single state variable, which is referred to

as common mixture modeling in the actuarial literature (Wang, 1998). S̄n then follows a two-

state mixture and our results in the Online Appendix can again be used to evaluate the expected

utility with an exponential utility function. In Panel D of Figure 1, we illustrate the resulting

relationship between the pool size and the corresponding certainty equivalent for pL = 0.96,

pH = 0.04, µL = 5/3, µH = 10, σL = 4 and σH = 1.

v) Finally, we consider an example with fat-tailed risks from a multivariate t distribution. More

specifically, we assume (X1, . . . , Xn)′ ∼ T (µ,Σ, ν) with µ1 = . . . = µn = µ, (Σ)ij = 0 for
37These assumptions imply E[Xi] = 2 and σ[Xi] = 3.47, so that the first two moments are roughly comparable

to the normally distributed losses that we analyzed before. However, the mixture distribution is asymmetric with a
skewness coefficient of 1.15.
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i 6= j and (Σ)ii = σ2, i = 1, . . . , n. Then, it follows from the transformation properties of

elliptical random vectors that S̄n ∼ T (µ, 1
nσ

2, ν). Since the moment generating function of

the t distribution does not exist, we cannot use an exponential utility function in this case.

Instead, we rely on mean-variance preferences and use the corresponding certainty equivalent

wealth level

CEQmv(Wi,n) = E[Wi,n]− γi
2 var[Wi,n] (25)

to assess the pooling benefits for policyholders.38 Under the given assumptions, CEQmv(Wi,n)

can be computed analytically as shown in the Online Appendix. Panel E of Figure 1 illustrates

the relation between the pool size n and CEQmv(Wi,n) for γi = 1, µ = 2, σ = 4/
√

2, and ν = 4.

These values imply E[Xi] = 2 and σ[Xi] = 4 but the tails of the distribution are so heavy that

the fourth moment is not finite.

Since the distributions considered in all parts of Example 2 satisfy our Assumption A1, all

graphs shown in Figure 1 are increasing in the pool size in line with Proposition 1.

3.3 VaR-Based Capital Requirements

We now turn to the VaR-based rule for the determination of the equity capital according to equa-

tion (12). The resulting default loss per policyholder is then given by

L̄vn = max(S̄n −VaRα

[
S̄n − π

]
− π, 0) = max(S̄n −Q1−α[S̄n], 0), (26)

where we exploit equation (13) and Q1−α[S̄n − π] + π = Q1−α[S̄n].

As already pointed out, this situation is highly relevant from a practical perspective given the

current capital regulation in several insurance markets. Moreover, it is also of special interest from

an economic point of view because a VaR-based capital rule implies in many cases that the equity

per policyholder is decreasing in the size of the risk pool as illustrated in Example 1.

From the policyholders’ perspective, a decreasing capital level can potentially offset the di-

versification benefits on the pool level stated in Lemma 1.39 If this is the case, only the equity
38As an alternative to this specification, we present results for a truncated t distribution and power utility prefer-

ences in Section V.1 of the Online Appendix.
39From the potential policyholder’s perspective, there is consequently a trade-off between diversification benefits

in larger risk pools and lower levels of risk capital provided by the equity holders.
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Figure 1: Volume-Based Capital Requirements
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Note: This figure illustrates the relationship between the pool size and a policyholder’s expected utility given volume-based
capital requirements. It shows the certainty equivalent (CEQ) of buying the vulnerable contract (black line) as a function of
the pool size n as well as the value of the corresponding safe contract (gray line) for the cases described in Example 2. We
assume w0,i = 10, π = 2 and c = 1. In Panels A-C, we present results for independent and identically distributed risks using a
normal distribution with Xi ∼ N (2, 42) (Panel A), a Gamma distribution with Xi ∼ G( 4

3 ,
3
2 ) (Panel B) and a two-component

normal mixture with µL = 0, µH = 8, σL = σH = 0.1, pL = 3
4 and pH = 1

4 (Panel C). The illustration in Panel D builds on
two-component normal mixtures with a common state indicator and the parameters pL = 0.96, pH = 0.04, µL = 5/3, µH = 10,
σL = 4 and σH = 1. Panel E shows results for risks from a multivariate t distribution with (X1, . . . , Xn)′ ∼ T (µ,Σ, ν), where
µ1 = . . . = µn = 2, (Σ)ij = 0, i 6= j, (Σ)ii = (4/

√
2)2, i = 1, . . . , n, and ν = 4. In Panels A-D, we use an exponential utility

function with γi = 0.5 and Panel E relies on the mean-variance preferences given in equation (25) with γi = 1.
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holders but not the policyholders benefit from risk pooling. Interestingly, this adverse effect for

policyholders is not caused by the lack of subadditivity, which the VaR is often criticized for, but

it is a potential problem in cases satisfying the subadditivity condition. From this perspective, the

given problem is related to Dhaene et al. (2008), who analyze whether risk measures can be “too

subadditive” in the context of setting capital requirements.

The following example illustrates the different relationships between the pool size and the

policyholder’s utility that can arise under a VaR-based capital regulation.40

Example 3 In this example, we reinvestigate the distributional assumptions and preference speci-

fications introduced in Example 2 for the case that the available equity capital is determined using

the VaRα with α = 0.05. Furthermore, we again choose π = 2 and w0,i = 10 for our illustrations.

Similar to equation (23), we write the expected utility from buying a vulnerable contract obtained

with an exponential utility function as

E[ui(Wi,n)] = 1− exp (−γi(w0,i − π)) ML̄vn
(γi), (27)

where ML̄vn
(γi) is the moment generating function of L̄vn defined in equation (26).

i) For the case of independent losses with a normal distribution, Xi ∼ N (µ, σ2), we know that

VaRα

[
S̄n
]

= µ+ 1√
n
σΦ−1(1−α) and derive a closed form solution for ML̄vn

(γi) in the Online

Appendix. Building on this expression, we confirm that the policyholders’ expected utility ac-

cording to equation (27) is increasing in n. In Panel A of Figure 2, we graphically illustrate

this increasing relationship using the same distribution parameters as in Example 2 i).41

ii) For independent and identically distributed risks with a Gamma distribution, it holds that

S̄n ∼ G
(
na, bn

)
and we can thus rely on the quantile function of the Gamma distribution

and its partial moment generating function to calculate the expected utility from buying the

vulnerable contract with an exponential utility function. We illustrate the resulting relationship

between the pool size and the corresponding certainty equivalents for a = 4/3 and b = 3/2 in
40Detailed calculations for this example as well as additional examples can be found in the Sections IV and V of

the Online Appendix.
41The graph again indicates the convergence to the utility level of the safe insurance contract. See Example I.2 in

the Online Appendix for a formal asymptotic analysis of the policyholders’ position.
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Figure 2: VaR-Based Capital Requirements
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Note: This figure illustrates the relationship between the pool size and a policyholder’s expected utility given VaR-based capital
requirements for the distributional assumptions and preferences used in Example 3. We present results for pooling risks with a
normal distribution (Panel A), a Gamma distribution (Panel B), independent mixtures (Panel C), dependent mixtures (Panel D)
and a multivariate t distribution (Panel E). We show the certainty equivalent (CEQ) of buying the vulnerable contract (black
line) as a function of the pool size n as well as the value of the corresponding safe contract (gray line) assuming an exponential
utility function (Panels A-D) or mean-variance preferences (Panel E). Further details on our specific assumptions are provided
in Figure 1.
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Panel B of Figure 2. As in the case of a constant capital per policyholder, increasing the number

of policies in the pool turns out to be beneficial for policyholders under these assumptions.

iii) Next, we again consider the independent two-component mixtures used in part iii) of Example 2.

We calculate VaRα

[
S̄n
]

numerically based on the cumulative distribution function of S̄n and

use this result to determine the expected utility according to equation (27). In this case, the

sign of the relationship between the pool size and the policyholder’s expected utility depends on

the range of n and on the distribution parameters. For the parameters used in Example 2 iii),

we illustrate the resulting relationship in Panel C of Figure 2. Although the certainty equivalent

of the vulnerable contract approaches the level of the safe policy for large n, it can be preferable

for risk-averse policyholders to participate in a smaller rather than in a larger risk pool for

some values of n.

iv) We also reinvestigate the mixture specification introduced in part iv) of Example 2 that cap-

tures the occurrence of a simultaneous crash scenario for all risks in the pool with VaR-based

capital requirements. We present the resulting relationship between the pool size and the cer-

tainty equivalent from buying the vulnerable contract in Panel D of Figure 2. This illustration

shows that the expected utility from buying the vulnerable contract can even be monotonically

decreasing in the size of the risk pool. It is interesting to note that this decrease in the expected

utility occurs despite a relatively low unconditional Pearson correlation between the risks of

only 0.15.

v) We finally reconsider pooling risks from a multivariate t distribution as in part v) of Example 2.

Under this assumption, we obtain VaRα

[
S̄n
]

= µ + σ√
n
qt(1 − α; ν) with qt( · ; ν) denoting the

quantile function of the t distribution with ν degrees of freedom. Due to the heavy tails of the

t distribution, we again use the mean-variance preference specification from equation (25) and

show the resulting certainty equivalent from buying the vulnerable contract as a function of n

in Panel E of Figure 2. Since the utility level is monotonically increasing in the pool size,

the example illustrates that pooling benefits for policyholders under a VaR-based regulation can

also occur with (moderately) heavy-tailed risks.

The parts iii) and iv) of the previous example clearly show that risk pooling with a larger number
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of policies can reduce the expected utility under a VaR-based capital rule – even if Assumption A1

is satisfied. In these cases, the policyholders’ position can be adversely affected by an increase in

the pool size even though S̄n+1 �icx S̄n holds for all n ≥ 1. We thus need additional restrictions to

identify cases, in which larger risk pools are beneficial for policyholders with VaR-based minimum

capital requirements.

For this purpose, we next present a necessary and sufficient condition which relies on the so-

called excess wealth order. According to Shaked and Shanthikumar (2007, p. 164), X is said to be

smaller than Y in excess wealth order (X �ew Y ) if

∫ ∞
Qu[X]

(1− FX(x))dx ≤
∫ ∞
Qu[Y ]

(1− FY (y))dy for all u ∈ (0, 1). (28)

The integrals in this definition are known as excess wealth transforms and their form can be

related to the (generalized) Lorenz curve, which reveals a connection to the theory of majorization

(Marshall et al., 2011, Section 17.D). In an actuarial context, excess wealth order has for example

been studied by Denuit and Vermandele (1999) or Sordo (2008, 2009).

Using this stochastic order, we introduce the following assumption:

Assumption A4 S̄n+1 �ew S̄n for all n ≥ 1.

Given E
[
S̄n
]

= E
[
S̄n+1

]
, S̄n+1 �ew S̄n implies S̄n+1 �icx S̄n but the converse does not neces-

sarily hold (Shaked and Shanthikumar, 2007, p. 166 and Theorem 4.A.34). In this sense, Assump-

tion A4 is more restrictive for the average risk of the pool than Assumption A1, which only implies

S̄n+1 �icx S̄n.

To understand the economic content of Assumption A4, we characterize excess wealth order in

terms of VaR and Average Value-at-Risk (AVaR). The AVaR of a random loss X at the probability

level α is given by42

AVaRα[X] = 1
α

∫ 1

1−α
Qu[X]du. (29)

42We follow the terminology of Föllmer and Schied (2016). The AVaR is also known as Tail Value at Risk (Dhaene
et al., 2006) or Expected Shortfall (Acerbi and Tasche, 2002).
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Building on this definition, we can rewrite equation (28) as follows43

AVaRα[X]−VaRα[X] ≤ AVaRα[Y ]−VaRα[Y ] for all α ∈ (0, 1). (30)

Assumption A4 can thus be interpreted as a decrease in the “excess tail risk” beyond the VaR on

the level of the average claim per policyholder.

Using this condition, we are able to establish the following result on the benefits of risk pooling

under a VaR-based capital regulation.

Proposition 2 Suppose that the Assumptions A2 and A3 hold. Furthermore, assume that the

equity capital is given by cn = VaRα[Sn − nπ]. Then, the utility benefits of risk pooling under

default risk are increasing in the pool size for all α ∈ (0, 1) and n ≥ 1, i.e., Wi,n+1 �ssd Wi,n, if

and only if Assumption A4 is satisfied.

Proof: See the Appendix.

According to Proposition 2, every risk-averse agent prefers pooling her risk with a larger number

of policies if the excess wealth order requirement for the average claim per policyholder is satisfied.44

Furthermore, this requirement turns out to be a necessary condition for establishing utility gains

under a VaR-based regulation for all α ∈ (0, 1) and n ≥ 1.

As in the case of volume-based capital requirements, we again emphasize that the pooling

benefits (or adverse pooling effects) for policyholders according to Proposition 2 exclusively focus

on the diversification channel. Such risk-related utility gains (or losses) can again be offset by higher

(or lower) premiums charged. Furthermore, pooling-related utility losses that can occur under the

VaR-based solvency framework can alternatively be compensated by higher equity contributions.

From this point of view, an important implication of Proposition 2 is that such compensations can

be necessary for a larger degree of diversification and that they are related to the excess wealth

order condition from Assumption A4.

To illustrate this condition, we show that it can be used to distinguish between the cases
43Cf. Shaked and Shanthikumar (2007, Eq. 3.C.3) or Sordo (2008, Definition 3 and Eq. 6) together with Dhaene

et al. (2006, Theorem 2.1) for this characterization.
44An alternative sufficient condition for utility gains from risk pooling in the case of a VaR-based regulation is that

S̄n+1 is smaller than S̄n in dispersive order. See, e.g., Shaked and Shanthikumar (2007, p. 166) for the relationship
between dispersive order and excess wealth order.
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presented in Example 3.45

Example 4 Under the normality assumption used in part i) of Example 3, it is straightforward to

show that Assumption A4 holds. From AVaRα

[
S̄n
]

= µ+ 1√
n
σ E[Z | Z > Q1−α[Z]] with Z ∼ N (0, 1)

and equation (30), it follows that Assumption A4 is equivalent to

1√
n+ 1

σ (E[Z | Z > Q1−α[Z]]−Q1−α[Z]) ≤ 1√
n
σ (E[Z | Z > Q1−α[Z]]−Q1−α[Z]) . (31)

This inequality is satisfied for all n and α ∈ (0, 1) due to E[Z | Z > Q1−α[Z]] ≥ Q1−α[Z]. Panel A

of Figure 3 illustrates the corresponding decrease in excess tail risk for α = 0.05 and the parameters

used in Example 3 i). Panel B of Figure 3 also shows a decreasing relation between the excess

tail risk and the pool size under the assumptions introduced in Example 3 ii), i.e., for risks with a

Gamma distribution, and again α = 0.05. In contrast, Panel C and Panel D of Figure 3 show that

the relationship between the pool size and the excess tail risk as measured by AVaRα

[
S̄n
]
−VaRα

[
S̄n
]

is not decreasing under the mixture assumptions used in the parts iii) and iv) of Example 3 matching

the utility losses documented for these cases. For risks with a t distribution, we again find a

monotonic decrease in the excess tail risk with α = 0.05 as can be seen from Panel E of Figure 3.

Furthermore, the same argument as in part i) applies because it holds that AVaRα

[
S̄n
]

= µ +
1√
n
σ E[Z | Z > Q1−α[Z]] with Z ∼ T (0, 1, ν).

Since our excess tail risk condition is a property that depends on the marginal distributions

and the stochastic dependence structure of the risks in the pool, it is not possible to replace

Assumption A4 by a simpler criterion that only relies on the marginal distributions of the claims.

However, motivated by the parts i) and v) of the previous example, we can relate the following

more elementary assumptions on the joint distribution of the individual claims to the occurrence

of pooling benefits under a VaR-based solvency regulation.

Assumption A5
∑n
i=1Xi

d= an + bnZ, an, bn ∈ R with E
[
Z2] <∞ for all n ∈ N.

Assumption A6 The risks X1, . . . , Xn are independent and identically distributed with Xi
d= X

and X has a stable distribution with E[|X|] <∞ (i.e., the stability index κ is larger than one).
45We provide the relevant results for the calculation of the AVaR given our distributional assumptions in the Online

Appendix.
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Figure 3: VaR-Based Capital Requirements – Excess Tail Risk
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Note: This figure presents the excess tail risk AVaRα
[
S̄n
]
−VaRα

[
S̄n
]

as a function of the size of the risk pool n for α = 5%
and the distributional assumptions discussed in the Examples 2-4. We show results for pooling risks with a normal distribution
(Panel A), a Gamma distribution (Panel B), independent mixtures (Panel C), dependent mixtures (Panel D) and a multivariate
t distribution (Panel E). We refer to Figure 1 for additional details on the specific distributional assumptions for each of these
cases.
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Assumption A5 requires that the distribution of the total claim amount Sn =
∑n
i=1Xi is in the

same location-scale family for all n and that its variance is finite.46 Assumption A6 can be seen

as an extension of Assumption A5 to risks that only satisfy E[|Xi|] < ∞ instead of E
[
X2] < ∞

for the class of stable distributions. Using these additional assumptions, we can state the following

modification of Proposition 2:

Corollary 1 Suppose that the Assumptions A1, A2, A3 and A5 or the Assumptions A2, A3 and

A6 hold. If the equity capital is given by cn = VaRα[Sn − nπ], then the utility benefits of risk

pooling are increasing in the pool size, i.e., Wi,n+1 �ssd Wi,n for all n ≥ 1.

Proof: See the Appendix.

Note that the conditions in Corollary 1 are only sufficient but not necessary in contrast to

the excess wealth order condition (Assumption A4). An important class of distributions satisfying

Assumption A5 are multivariate elliptical distributions (Owen and Rabinovitch, 1983; Landsman

and Valdez, 2003; Hamada and Valdez, 2008). This class also includes the multivariate t distribution

considered in our previous examples. For elliptical losses, the moment condition in Assumption A5

can be relaxed to E[|Xi|] <∞.47 The applicability of Corollary 1 to heavy-tailed risks, such as risks

with a multivariate t distribution48 or risks with stable distributions, seems particularly relevant

given the comprehensive empirical evidence on the occurrence of power law tails in insurance and

finance.49

It is interesting that the results in Corollary 1 can again be related to majorization theory. If

the risks are independent or uncorrelated and satisfy Assumptions A1 and A5 or Assumption A6,

the preference for larger pools can be related to the majorization result from equation (18) and the

Schur-convexity of the function ψ(a1, . . . , an) =
∑n
i=1 a

δ
i for δ > 1 and ai ≥ 0, i = 1, . . . , n.50

Finally, we note that the additional asymptotic results that we provide in the Online Appendix

also apply to VaR-based capital standards (see again Proposition I.1). As for the case of a constant
46Note that this assumption is similar to the distributional requirements in Theorem 5 of Dhaene et al. (2008).
47In this case, it is straightforward to replace our variance-based reasoning with an argument using the linear

aggregation properties of elliptical random vectors (McNeil et al., 2015, p. 202). We thank an anonymous referee for
pointing out this extension.

48In Section V.1 of the Online Appendix, we present additional examples for independent risks with symmetric
and asymmetric t distributions.

49See e.g. Embrechts et al. (1997) and the literature review in Ibragimov et al. (2015).
50A Schur-convex function preserves the ordering of majorization. We include a formal definition of Schur-convexity

and an outline of the alternative proof in Section II of the Online Appendix. See also Ibragimov (2009), who applies
a similar argument for the proof of his Theorem 4.1.
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equity per policyholder, we basically find that the utility losses from default go to zero as n→∞ if

the reserves are sufficiently large to cover the expected claim amount and the individual losses are

independent.51 Accordingly, the results based on standard asymptotic diversification arguments

do not reflect the different consequences of pooling independent risks for the policyholders’ utility

documented in our analysis for finite n.

3.4 Policyholders as Owners

We eventually consider the case that the policyholders participating in a pool of size n also provide

the risk capital cn. More specifically, we assume that the policyholders and the equity holders are

identical and that each of the policyholders provides the same amount of equity capital.

The total payoff that the owners obtain for providing the initial equity capital corresponds to

Pn = max(cn + π n− Sn, 0). (32)

If this payoff is distributed equally, each of the owners receives

P̄n = 1
n
Pn = max(c̄n + π − S̄n, 0) (33)

at time t = 1 after paying c̄n at time t = 0. The wealth resulting from the combined policyholder

and owner position is thus given by

W c
i,n = w0,i − π − L̄n − c̄n + P̄n. (34)

With max(a, 0)−max(−a, 0) = a, equation (34) simplifies to

W c
i,n = w0,i − S̄n. (35)

This exactly corresponds to the position of the policyholders in the case of a mutual insurance

company that is in detail analyzed by Gatzert and Schmeiser (2012) and Albrecht and Huggen-

berger (2017). Therefore, the benefits of larger risk pools documented for this case also apply
51Note that our asymptotic results do thus not apply to parts iv) and v) of Example 3, in which the losses being

pooled are not independent.
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to the given situation. In particular, we obtain from Theorem 4.1 in Albrecht and Huggenberger

(2017) that larger pools are always weakly preferred to smaller pools, i.e., W c
i,n+1 �ssd W c

i,n, if the

policyholders also own the equity stake – irrespective of the premium and the available amount of

equity capital. Accordingly, the potential disadvantages of risk pooling for policyholders under a

VaR-based regulation are not relevant for mutual insurance companies or, more generally, if the

policyholders also own an equity stake.

It is worth noting that this potential advantage of mutual insurance companies requires that

the mutual insurer implements a perfect risk sharing as described by equation (35).52 However,

this position will typically not be reached in real-world insurance markets, for example due to a

limited profit participation. A violation of equation (35) will typically lead to a wealth transfer

between policyholder groups and/or generations.53

3.5 Discussion

Our results in Section 3.2 for volume-based capital requirements extend previous findings on the

benefits of risk pooling for policyholders from the mutual insurance case to the case of stock

insurance companies. In contrast, our results in Section 3.3 reveal that the interaction of risk pooling

and VaR-based solvency rules can have adverse consequences from the policyholder’s perspective.

Furthermore, our analysis shows that potential adverse pooling effects are related to increases in

the excess tail risk of the pool.

As already outlined following Propositions 1 and 2, these results do not necessarily imply that

buying insurance from companies with portfolios of different sizes results in different levels of

expected utility for policyholders. On the one hand, the owners of a company can compensate

policyholders for adverse pooling effects related to default risk by lowering premiums or making

larger equity contributions. On the other hand, diversification benefits for policyholders resulting

from larger risk pools could be transferred to equity holders by increasing insurance premiums. All

else equal, the occurrence of such adjustments in response to diversification effects likely depends

on the market power that insurance companies have. In competitive markets, insurers might have

to adjust premiums or equity contributions such that they offer contracts with comparable utility
52We thank an anonymous referee for pointing out this important limitation.
53Cf. Braun et al. (2015, Section 2) for a literature review on frictions relevant for comparing mutual and stock

insurers and see Orozco-Garcia and Schmeiser (2019) for intergenerational wealth transfers.

29



levels. Moreover, an endogenous determination of the pool size could avoid or reduce adverse

diversification effects for policyholders.54

In addition, our results in Section 3.4 show that rational policyholders could set up a mutual

insurance company to avoid utility losses under a VaR-based regulation if excess tail risk increases.

This alternative could force the owners of stock insurers to compensate policyholders for potential

pooling-related utility losses. More generally, the alternative to set up a mutual is likely to constrain

the premiums charged by stock insurers and the corresponding capital contributions such that

policyholders attain similar utility levels under both organizational forms.55

Overall, we think it is important to pay attention to the distinct effects that diversification can

have on the average risk of the pool and on the policyholder’s position under VaR-based solvency

rules and to be aware that potential compensation could also be required in companies with larger

portfolios.

4 Extensions

We next analyze selected modifications of our baseline assumptions. In Section 4.1, we investigate

the potential impact of expenses on the benefits of risk pooling in the presence of default risk.

Section 4.2 introduces investment risk as an additional source of uncertainty that affects default

losses. In Section 4.3, we analyze the benefits of risk pooling for more general types of coverage

and more general rules for sharing the total default loss. Section 4.4 presents extensions of our

results to pools with heterogeneous risks. Section 4.5 finally discusses the effect of an endogenous

premium which reflects the default risk of the insurance company.

4.1 Operating Expenses

We denote the operating expenses of an insurer with a risk pool of size n by en. Furthermore,

ēn := en/n is used for the average expenses per policyholder. We assume that these expenses

do not grow faster than the size of the risk pool, which captures the decrease of fixed costs per
54A formal analysis of these effects would require additional assumptions on the structure of the insurance market

and is beyond the scope of this paper.
55See Schmeiser and Orozco-Garcia (2021) for a comprehensive comparison of conditions (in particular, combi-

nations of premiums and equity contributions) under which policyholders are indifferent between buying contracts
offered by mutual and stock insurers.
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policyholder. Accordingly, the average expenses per policyholder are weakly decreasing, which we

formalize with the following assumption:

Assumption E1 ēn ≥ ēn+1 for all n ∈ N.

To cover the expenses, policyholders are charged the gross premium

π̄en = π + ēn. (36)

We thus assume that the expense loading exactly covers the expenses per policyholder. This implies

that the expenses do not affect the magnitude of the default loss denoted by L̄en. Under our baseline

assumptions A2 and A3, it holds that

L̄en = max(S̄n + ēn − c̄n − π̄en, 0) = max(S̄n − c̄n − π, 0) = L̄n. (37)

However, under Assumption E1, the gross premium is allowed to vary with the size of the risk

pool. This introduces a second channel through which the size of the risk pool affects the utility

of policyholders. In particular, the wealth from buying the vulnerable insurance policy accounting

for the expense loading is given by

W e
i,n = w0,i − π̄en − L̄en = Wi,n − ēn. (38)

We can extend our results on the benefits of risk pooling to this wealth position as follows:

Corollary 2 Suppose that the Assumptions A2, A3 and E1 hold.

i) If the equity capital is given by cn = c n and Assumption A1 is satisfied, then the utility benefits

of risk pooling under default risk are increasing in the pool size, i.e., W e
i,n+1 �ssd W e

i,n for all

n ≥ 1.

ii) If the equity capital is given by cn = VaRα[Sn − nπ] and Assumption A4 holds, then the utility

benefits of risk pooling under default risk are increasing in the pool size, i.e., W e
i,n+1 �ssd W e

i,n

for all n ≥ 1.

Proof: See the Appendix.
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Under volume-based solvency standards, we thus obtain utility gains from risk pooling without

additional assumptions.56 The cost benefits reinforce the preference for larger risk pools that comes

from diversification benefits. For the case of a VaR-based capital rule, we again need the excess

wealth order condition on the average claim per policyholder. In contrast to the analysis without

expenses, we do not obtain an equivalence between this condition and a preference for larger risk

pools. This difference reflects that the cost channel can imply a preference for larger pools even if

the excess tail risk is not decreasing in the pool size.

Example 5 To illustrate these results, we assume en = f + v · n for the total operating expenses,

where f ≥ 0 (v ≥ 0) correspond to the fixed (variable) costs assigned to the given insurance portfolio.

More specifically, we choose f = 4 and v = 0.1 for our example. We reconsider the assumptions

used for Example 3 parts iii) and iv), that means, we investigate VaR-based capital requirements, an

exponential utility function and risks that follow independent and dependent mixture distributions.

In Figure 4, we plot the certainty equivalents of W e
i,n as a function of the pool size after ac-

counting for cost benefits. Comparing Panel C of Figure 2 and Panel A of Figure 4, we find that

the decrease in fixed costs per policyholder fully compensates the utility losses over the given range

of n for the specification with independent risks. In contrast, we document a hump-shaped pat-

tern in Panel B for the specification with dependent risks. In this case, the cost benefits do not

overcompensate utility losses from pooling for larger n but only reduce their magnitude.

Overall, our results confirm the intuition that cost benefits of larger risk pools can be an

additional channel that generates utility gains for policyholders.

4.2 Investment Risk

We next investigate the impact of investment risk on our results. We assume that premiums are

invested at a random return R and that the profits or losses from this investment reduce or increase

the default loss at the end of the period. In contrast, the equity capital (minimum risk capital)

may only be invested at the risk-free rate, which is still assumed to be zero.57 The total default
56Note that Corollary 2 only compares the utility levels from buying a vulnerable insurance contract for different

values of n. It does not include a comparison with the no insurance alternative, which can dominate an insurance
solution if the operating expenses per policyholder are too high.

57Assuming that the equity capital cn itself is not exposed to investment risk is a simplification, which facilitates
our technical analysis.
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Figure 4: Risk Pooling and Operating Expenses
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Note: This figure presents the relation between the certainty equivalents of buying a vulnerable insurance contract and the
pool size after accounting for decreasing operating expenses per policyholder. We rely on the assumptions introduced in
Example 5. In particular, we apply VaR-based capital requirements with α = 0.05, an exponential utility function and the
mixture assumptions already used in the parts iii) and iv) of the Examples 2 and 3 for the risks in the pool. In addition, we now
assume en = 4+0.1n for the total operating expenses. We show the certainty equivalents (CEQ) of buying a vulnerable insurance
contract as a function of the pool size n for risks with independent (Panel A) and dependent (Panel B) mixture distributions.
We refer to Figure 1 for additional details on the underlying distributional assumptions used for these illustrations.

loss for a pool of size n with investment risk is then given by

Linvn = max(Sn − nπ (1 +R)− cn, 0) (39)

and the average default loss corresponds to

L̄invn = max(S̄n − π(1 +R)− c̄n, 0). (40)

In line with Assumption A3, we consider an equal sharing of the modified default loss among

policyholders.

Assumption I1 With investment risk, the default loss of policyholder i from a risk pool of size n

is given by Di,n = L̄invn for i = 1, . . . , n.

Accordingly, the default loss depends on the joint distribution of the average claim per policy-

holder S̄n and the investment return R. We introduce the following additional assumptions on the

joint distribution of R and the losses Xi, i = 1, . . . , n:
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Assumption I2 The investment return R is independent of the losses X1, . . . , Xn.

Assumption I3 The distribution of the investment return R has a log-concave density.

The class of distributions with log-concave densities includes important examples such as normal

distributions and gamma distributions with a shape parameter a ≥ 1, but it does not allow for

heavy-tailed investment risks with power law tails.58

For W inv
i,n = w0,i−π− L̄invn , we are able to extend the results of our baseline analysis as follows:

Proposition 3 Suppose that the Assumptions A2, I1 and I2 hold.

i) If the equity capital is given by cn = n c and Assumption A1 is satisfied, then the utility benefits

of risk pooling under default risk are increasing in the pool size, i.e., W inv
i,n+1 �ssd W inv

i,n for all

n ≥ 1.

ii) If the equity capital is given by cn = VaRα[Sn − nπ(1 +R)] and the additional Assumptions A4

and I3 hold, then the utility benefits of risk pooling under default risk are increasing in the pool

size, i.e., W inv
i,n+1 �ssd W inv

i,n for all n ≥ 1.

Proof: See the Appendix.

According to part i) of this proposition, independent investment risk does not affect our result

that policyholders prefer larger risk pools if the equity capital is proportional to the premiums. If

the equity capital is calculated based on the VaR taking into account the additional investment

risk, we do not only need the excess wealth order condition on S̄n but also an additional restriction

on the distribution of the investment return R to establish that larger risk pools are beneficial for

policyholders. Furthermore, the conditions stated in ii) of Proposition 3 are only sufficient but not

necessary in contrast to the case without investment risk considered in Proposition 2.

4.3 General Coverage and Loss Sharing Rules

We next show that our main results on the benefits of larger risk pools can also be extended to

more general contract types and alternative specifications of the individual loss from default if we
58Cf. An (1998, Corollary 1 ii) for the tail behavior of distributions with log-concave densities and see also Bagnoli

and Bergstrom (2005) for a comprehensive discussion of log-concavity and a list of distributions with log-concave
densities.
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replace the exchangeability assumption on the losses with the common assumption of independent

and identically distributed losses. We therefore introduce:

Assumption G1 The losses (X1, . . . , Xn) are independent and identically distributed with

E[|Xi|] <∞ for all i = 1, . . . , n.

In contrast to Assumption A1, G1 rules out dependent losses, which allows us to separate the impact

of the own loss Xi and of the other policyholders’ losses Xj , j 6= i, on the utility of policyholder i.

Furthermore, the full-coverage assumption can be relaxed as follows:

Assumption G2 Agent i can buy an insurance contract that pays the indemnity f(Xi) for a risk

premium π > 0, i = 1, . . . , n. The indemnity function f is non-decreasing and E[|f(X1)|] <∞.

In addition to full coverage, this assumption allows for well-studied contracts such as linear coverage

(Mossin, 1968) or contracts with deductibles (Arrow, 1974). Note that our following analysis will

take the specific form of the contract as given in contrast to the literature on insurance demand

that aims at characterizing the optimal choice of f . Furthermore, Assumption G2 implies that

the type of coverage, i.e. the indemnity function, is identical for all policies. In combination with

Assumption G1, this ensures that we are again analyzing a homogeneous pool.

To generalize Assumption A3, we assume that the individual default loss Di,n depends on the

own claim f(Xi) and the average claim of the other policyholders

S̄fi,n = 1
n− 1

n∑
j=1,j 6=i

f(Xj). (41)

Specifically, we introduce

L̄fi,n = max(S̄fi,n − π − c̄i,n, 0) (42)

as the average default loss of the risk pool without policyholder i, where c̄i,n is the average equity

capital for the pool without policy i. This definition implicitly assumes that the pool is large and

granular enough so that the claim of policyholder i is not relevant for the default of the portfolio.

In other words, adding policy i to the pool does not change the occurrence of the default event.

Nevertheless, the policyholder’s claim can be relevant for her loss in case of a default as described

by the following general default loss specification.
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Assumption G3 The default loss of policyholder i from a risk pool of size n is given by Di,n =

g(L̄fi,n, f(Xi)), i = 1, . . . , n and n ∈ N, with a measurable function g : R2 → R that satisfies

g(0, y) = 0 for y ∈ R. g is (weakly) increasing in both arguments and convex in its first argument.

A central feature of this definition is that the individual default loss is increasing in both,

the own claim and the average total default loss of the other policyholders. Furthermore, the

requirement g(0, y) = 0 for all y ∈ R ensures that the individual default loss is zero if there is no

excess loss for the other policyholders, i.e., L̄fi,n = 0. According to the convexity of g, the increase

in Di,n is higher for high levels of L̄fi,n. This allows for lower levels of excess losses to be partially

covered by additional reserves or a guaranty fund.59

We briefly discuss examples for specific default functions g that satisfy Assumption G3:

Example 6 Similar to the sharing rule used in our baseline analysis, an equal distribution of

default losses corresponds to the function g(l, y) := β l for β ≥ 0. With this choice, we obtain

Di,n = β L̄fi,n (43)

for the default loss of policyholder i. A simple extension of this rule that also considers the mag-

nitude of the own claim amount is g(l, y) = β l max(y, 0), where again β ≥ 0.60 The individual

default loss is then given by

Di,n = β L̄fi,n max(f(Xi), 0). (44)

Accordingly, policyholders with a high claim are assigned a larger fraction of the total default loss.

Note that similar rules are commonly used in insurance bankruptcy laws.61

We finally introduce a version of our excess wealth order condition from Assumption A4 for the

given setting:
59The idea of introducing general “sharing rules” for the default loss is already implicit in Condition 1 of Ibragimov

et al. (2010). Compared to their conditions, we do not impose an upper bound on the individual share of the default
loss and we do not explicitly require that the individual default losses add up to the total excess loss. Note that the
latter requirement might be less appropriate in our setting as it rules out a partial compensation of the policyholders
by a guaranty fund.

60The max-function is not required if the loss distribution and the indemnity function imply that f(Xi) is nonneg-
ative, which is typically the case.

61See, e.g., the U.S. Insurer Receivership Model Act, which states that “all claims allowed within a priority class
shall be paid at substantially the same percentage” (National Association of Insurance Commissioners, 2007, Section
802).
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Assumption G4 S̄fi,n+1 �ew S̄
f
i,n for all n ≥ 1.

Under the Assumptions G2 and G3, the wealth from buying a vulnerable insurance contract

corresponds to

W g
i,n = w0,i − π −Xi + f(Xi)− g(L̄fi,n, f(Xi)). (45)

For this wealth position, we can establish the following results:

Proposition 4 Suppose that the Assumptions G1, G2 and G3 hold.

i) If the average equity capital is constant, i.e. c̄i,n = c, then the utility benefits of risk pooling

under default risk are increasing in the pool size, i.e., W g
i,n+1 �ssd W

g
i,n for all n ≥ 1.

ii) If the average equity capital is given by c̄i,n = VaRα

[
S̄fi,n − π

]
and Assumption G4 holds,

then the utility benefits of risk pooling under default risk are increasing in the pool size, i.e.,

W g
i,n+1 �ssd W

g
i,n for all n ≥ 1.

Proof: See the Appendix.

Proposition 4 shows that Assumption G1 is sufficient for obtaining utility gains from insurance

in larger risk pools under a capital regulation with a proportional growth of the reserves. To

obtain the same result under a VaR-based capital regulation, we again need an excess wealth order

requirement, i.e., Assumption G4, that is analogous to Assumption A4 in our baseline analysis.

Overall, Proposition 4 shows that the results of our baseline analysis obtained under a full coverage

and equal default loss sharing assumption can be extended to more general contract types and to

alternative rules for sharing the total default loss.

4.4 Heterogeneous Risks

We first consider the case of risks that are heterogeneous with respect to the corresponding expected

loss. For this purpose, we introduce the following extension of Assumption A1:

Assumption H1 The risks are given by Xi = µi + Zi, µi ∈ R, i = 1, . . . , n. The distribution of

(Z1, . . . , Zn) is exchangeable with E[Zi] = 0.

To avoid wealth transfers between policyholders in this case, we allow for policyholder-specific

premiums that can reflect differences in the expected claims.
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Assumption H2 Full coverage of Xi is offered at the individual premium πi, i = 1, . . . , n.

Under this assumption, the premiums paid for a pool of size n are given by
∑n
i=1 πi. Therefore,

we extend our baseline assumption A3 on the default loss as follows:

Assumption H3 The default loss of policyholder i in a pool of size n is given by Di,n =
1
n max{Sn − cn −

∑n
j=1 πj , 0}.

The definition of VaR-based capital requirements from equation (12) is adapted accordingly,

i.e., cn = VaRα

[
Sn −

∑n
j=1 πj

]
. Finally, we rewrite the excess wealth order condition in terms of

Z̄n := 1
n

∑n
i=1 Zi for the Zi, i = 1, . . . , n, given in Assumption H1.

Assumption H4 Z̄n+1 �ew Z̄n for all n ≥ 1.

Under these assumptions, the wealth of policyholder i, who buys a vulnerable contract to fully

cover Xi at the premium πi, is given by W h
i,n = w0,i − πi −Di,n. For this position, we obtain the

following results on the benefits of risk pooling:

Proposition 5 Suppose that the Assumptions H1, H2, H3 hold.

i) If the equity capital is given by cn = c n and the individual premiums satisfy πi = E[Xi] + l,

i = 1, . . . , n, then the utility benefits of risk pooling under default risk are increasing in the pool

size, i.e., W h
i,n+1 �ssd W h

i,n for all n ≥ 1.

ii) If the equity capital is given by cn = VaRα

[
Sn −

∑n
j=1 πj

]
, then the utility benefits of risk

pooling under default risk are increasing in the pool size for all α ∈ (0, 1) and all n ≥ 1, i.e.,

W h
i,n+1 �ssd W h

i,n, if and only if Assumption H4 holds.

Proof: See the Appendix.

It is interesting to note that we only need a restriction on the individual premiums for the case

of proportional capital requirements. In contrast, the result for a VaR-based solvency framework

does not require any additional assumption on the premiums. This reflects that changes in the total

premiums paid will be offset by changes in the available equity under a VaR-based solvency rule.
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Furthermore, under Assumption H1, the conditions S̄n+1 �ew S̄n and Z̄n+1 �ew Z̄n are equivalent,

which follows from the location independence of excess wealth order.62

We next consider the case of heterogeneous risks with different scale parameters.

Assumption H5 Xi = µ+ σiZi, µ ∈ R, σi > 0 with Zi
d= Z and E[Z] = 0, i = 1, . . . , n.

In this case, we investigate the following modifications of the Assumptions A5 and A6 from

Section 3.3:

Assumption H6
∑n
i=1Xi

d= an + bnZ, an, bn ∈ R for all n ∈ N. E
[
Z2] <∞ and cov [Zi, Zj ] = 0,

i 6= j.

Assumption H7 Z1, . . . , Zn are independent and Z has a symmetric stable distribution with sta-

bility index κ > 1.

To allow for heterogeneity in the scale parameters, we thus add the following restrictions com-

pared to the baseline analysis: Assumption H6 requires that the risks are uncorrelated and As-

sumption H7 focuses on symmetric stable distributions. Under these assumptions, we can establish

the following result:

Proposition 6 Suppose that the Assumptions A2, A3 and H5 are satisfied. Furthermore, assume

that the equity capital is given by cn = c n or cn = VaRα[Sn − nπ].

i) Under Assumption H6, the utility benefits of risk pooling are increasing in the pool size, i.e.,

Wi,n+1 �ssd Wi,n if
1

(n+ 1)2

n+1∑
j=1

σ2
j ≤

1
n2

n∑
j=1

σ2
j . (46)

ii) Under Assumption H7, the utility benefits of risk pooling are increasing in the pool size, i.e.,

Wi,n+1 �ssd Wi,n if
n+1∑
j=1

σκj
(n+ 1)κ ≤

n∑
j=1

σκj
nκ
. (47)

Proof: See the Appendix.
62The location independence can be seen from equation (30) with AVaRα[X + a] − VaRα[X + a] = AVaRα[X] −

VaRα[X].
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Proposition 6 presents conditions under which the pooling benefits for policyholders are robust

to losses with different levels of dispersion.63 The additional conditions in equations (46) and (47)

ensure that the risk of the loss being added to the pool is not too large compared to the losses

currently in the pool. Using results from majorization theory, it can be shown that these conditions

are satisfied if σ1 ≥ σ2 ≥ . . . ≥ σn ≥ σn+1 as can be seen from Ibragimov (2009, Appendix C), who

studies diversification benefits for heterogeneous fat-tailed risks in a VaR-framework under this

assumption.64 Finally, it is interesting to note that the more restrictive distributional assumptions

that we impose for the analysis of losses with different scale parameters are sufficient for the

occurrence of pooling benefits under both the volume-based and the VaR-based solvency rule.

4.5 Actuarially Fair Default-Consistent Premium

We finally relax the assumption of a constant and exogenously given premium. In particular, we

allow the premium to reflect the solvency level of the insurance company. For illustrative purposes,

we consider an actuarially fair premium that takes default losses for the policyholders into account.

Since the net payment to policyholder i corresponds to Xi − Di,n, the corresponding actuarially

fair premium is given by π̄dn = E[Xi −Di,n]. With Assumption A3, we obtain65

π̄dn = E[Xi]− E
[
max(S̄n − π̄dn − c̄n, 0)

]
, (48)

which we refer to as default-consistent premium. We are mainly interested in analyzing whether a

premium reflecting default risk can resolve the adverse pooling effects under a VaR-based regulation

and, therefore, focus on c̄n = VaRα

[
S̄n − π̄dn

]
. Under this additional assumption, we obtain the

following explicit characterization of the fair premium

π̄dn = E[Xi]− E
[
max(S̄n −VaRα

[
S̄n
]
, 0)
]

(49)

63Note that Proposition 6 is again based on our baseline Assumption A2, which means that we do not have to
assume policyholder-specific premiums to establish utility gains with heterogeneity in the dispersion of the risks being
pooled.

64 In particular, Ibragimov (2009) argues that the function χ(c1, . . . , cn) =
∑n

i=1 σ
κ
i c
κ
[i] is Schur-convex for κ > 1,

ci ≥ 0, i = 1, . . . , n, and σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0, where c[i] is again the i-th largest element of (c1, . . . , cn). We can
simply apply this result for the vectors from equation (18), which satisfy ci = c[i], i = 1, . . . , n.

65This approach is similar to the fair premium analyzed by Schmeiser and Orozco-Garcia (2021).
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from equation (48). Using the definition of the AVaR from equation (29), we can rewrite π̄dn from

equation (49) as follows66

π̄dn = E[Xi]− α
(
AVaRα

[
S̄n
]
−VaRα

[
S̄n
])
. (50)

This representation of the actuarially fair default-consistent premium in terms of AVaR and

VaR reveals an interesting relation to the discussion about excess tail risk in Section 3.3. It directly

follows from the characterization of the excess wealth order in equation (30) that Assumption A4 is

a sufficient condition for the default-consistent premium π̄dn to be increasing in the pool size. More

generally, equation (50) shows that π̄dn resulting from a given VaR probability level α decreases in

n if and only if the excess tail risk as measured by AVaRα

[
S̄n
]
−VaRα

[
S̄n
]

increases. This decrease

in the premium can at least partially compensate the policyholders for the increase in excess tail

risk generated from a larger pool. In contrast, the benefits to policyholders from a decrease in

excess tail risk will be partially offset by an increase in the default-consistent premium.

We illustrate this trade-off with the following example:

Example 7 We again consider the distributional assumptions, the preference specification as well

as the capital requirements introduced in Example 3. In addition, we assume that the premium for

the vulnerable contract is calculated according to equation (50), which implies W d
i,n = w0,i− π̄dn− L̄vn

for the wealth of policyholder i.

i) We first reconsider the case of normally distributed risks. In this case, equation (50) implies

π̄dn = µ− σ√
n

(
ϕ(Φ−1(1− α))− αΦ−1(1− α)

}
. (51)

We illustrate the resulting increasing relation between n and π̄dn in Panel A of Figure 5 using

again Xi ∼ N (2, 42). The expected utility from buying the vulnerable contract can be calculated

by extending the results from Example 3 i). The corresponding certainty equivalent is shown in

Panel B of Figure 5. We furthermore include the certainty equivalent of buying the vulnerable

contract with a fixed premium, which we set to π = π̄d2 to facilitate the comparison of both
66See, for example, Dhaene et al. (2006, Eq. 8) with α = 1 − p for the relation between E[max(Y − VaRα[Y ] , 0)],

VaRα[Y ] and AVaRα[Y ].
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settings. Our results show that policyholders also benefit from increasing the size of the risk

pool under a variable premium that reflects default risk but that the utility gains are somewhat

lower due to the increasing price they have to pay for less risky coverage.

ii) Second, we again investigate the case of risks with a simultaneous crash scenario as modeled by

the common mixture approach, for which we found a decreasing relation between the pool size

and the policyholder’s certainty equivalent in Example 3 iv). Consistent with the result shown in

Example 4 that the excess tail risk for α = 0.05 is increasing in n under the given assumptions,

we document in Panel C of Figure 5 that π̄dn is decreasing in the pool size. Accordingly, the

utility losses documented for the case of a fixed premium under these assumptions in Example 3

are partially compensated by a lower price that policyholders have to pay when buying insurance

from a company with a larger pool. However, as shown in Panel D of Figure 5, this effect only

dampens utility losses for policyholders but does not generate a positive relation between the

number of policies and the certainty equivalent.

Our discussion in this section shows that a variable premium which reflects the default risk

of the insurer has the potential to partly resolve the adverse pooling effects that can occur under

a VaR-based regulation. However, in the examples presented above, the actuarially fair default-

consistent premium only affects the magnitude of pooling effects from the policyholder’s perspective

without reversing their sign.

5 Concluding Remarks

We investigate the consequences of risk pooling from the policyholders’ perspective under different

solvency rules. We focus on the case of stock insurance companies taking into account the limited

liability of equity holders. For our analysis, we assume exchangeable risks and apply an endogenous

default definition. In addition, we use an SSD criterion for utility comparisons and assume that the

equity capital is exogenously determined with volume-based or VaR-based capital requirements.

Under these rather general assumptions, risk pooling within a stock insurance company can

affect the policyholder’s position through a reduction (or an increase) of utility losses from default

risk. If the equity capital grows proportionally with the pool size, all risk-averse policyholders
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Figure 5: Risk Pooling with a Default-Consistent Premium
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Note: This figure illustrates the effect of increasing the pool size on the fair premium reflecting the default risk of the insurance
company and on the related certainty equivalent from buying the vulnerable contract under VaR-based capital requirements
with α = 0.05. We rely on the assumptions introduced in Example 7. For the illustrations in Panel A and B, we assume
independent normally distributed risks. Panel A shows how the premium π̄dn calculated according to equation (50) varies with
the size of the risk pool n and Panel B presents the certainty equivalent (CEQ) of buying a vulnerable contract sold at the
default-consistent premium (gray line) π̄dn as a function of the pool size. Furthermore, it includes the certainty equivalent for
a contract that is sold at the fixed premium (black line) π = π̄d2 irrespective of the actual pool size n. In Panels C and D, we
show the corresponding results for risks with a common mixture distribution. We refer to Figure 1 for additional details on the
distributional assumptions and the preference specification underlying these illustrations.
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benefit from risk pooling without additional assumptions. In contrast, we demonstrate that pooling

a larger number of identical policies can adversely affect the policyholders’ utility from insurance

under a VaR-based regulation. For this case, we show that policyholders attain utility gains from

larger risk pools if the excess tail risk of the average claim does not increase with the pool size.

Our analysis clarifies the effects of risk pooling on the policyholders’ utility beyond the mutual

insurance case analyzed by Albrecht and Huggenberger (2017). Furthermore, our findings indicate

that it can be important to complement well-known asymptotic techniques with results for finite n

to understand the economic implications of risk pooling and diversification. In particular, our non-

asymptotic results reveal that diversification benefits on the portfolio level can have unexpected

adverse consequences for policyholders under a VaR-based solvency framework. Since such pooling-

related disadvantages of risk-based capital requirements can potentially be offset by lower premiums

or higher equity contributions, it seems important that policyholders (and regulators) are aware of

these side effects.

An interesting direction for future research can be the analysis of risk pooling from the policy-

holders’ perspective under alternative regulatory frameworks or different assumptions that deter-

mine the available amount of equity for a given pool size.

Appendix

We first summarize a selection of results on SSD, increasing convex order and excess wealth order,

which we will use in the following proofs.

Lemma 2

i) Let X and Y be two random variables. Then

X �icx Y ⇔ −X �ssd −Y. (52)

ii) Let f (g) be an increasing convex (concave) function. Then, it holds for the random variables
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X and Y that

X �icx Y ⇒ f(X) �icx f(Y ), (53)

X �ssd Y ⇒ g(X) �ssd g(Y ). (54)

iii) Let (X1, X2) and (Y1, Y2) be pairs of independent random variables. If Xi �ssd Yi, i = 1, 2,

and w : R2 → R is component-wise increasing and concave, then

w(X1, X2) �ssd w(Y1, Y2). (55)

If Xi �icx Yi, i = 1, 2 and g : R2 → R is component-wise increasing and convex, then

g(X1, X2) �icx g(Y1, Y2). (56)

iv) Let X and Y be two random variables. Then

X �ew Y ⇔ max(X −Qα[X], 0) �icx max(Y −Qα[Y ], 0) for all α ∈ (0, 1). (57)

v) Let X and Y be random variables with X �ew Y and let Z be a random variable that is

independent of X and Y . If Z has a log-concave density, then

X + Z �ew Y + Z. (58)

See Shaked and Shanthikumar (2007, Theorem 4.A.1) for the result in i). Part ii) and the

icx-result in part iii) can be found in the Theorems 4.A.8 and 4.A.15 in Shaked and Shanthikumar

(2007). The equivalence stated in equation (57) is shown by Sordo (2008, Theorem 6ii).67 v) follows

from Theorem 3.1 in Hu et al. (2006) and the relationship between excess wealth order and location

independent risk order.

Proof of Proposition 1: Given Assumption A1, Lemma 1 and Lemma 2 i) imply for the
67A version of this result for continuous distributions can also be found in Shaked and Shanthikumar (2007, Theorem

4.A.43).
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average claim amount per policyholder that S̄n+1 �icx S̄n. Since the function ψ(x) = max(x− c−

π, 0) is increasing and convex, it follows from Lemma 2 ii) that

L̄cn+1 = ψ(S̄n+1) �icx ψ(S̄n) = L̄cn. (59)

Using equation (52), we conclude −L̄cn+1 �ssd −L̄cn. Note that the function ψ defined above is not

strictly increasing. Therefore, we cannot establish results based on a strict version of second degree

stochastic dominance with this reasoning.

For η(x) := w0,i − π + x, it holds that Wi,n = η(−L̄cn) and Wi,n+1 = η(−L̄cn+1). Since η is an

increasing linear transformation, Wi,n+1 �ssd Wi,n follows from equation (54) in Lemma 2. �

Proof of Proposition 2: Due to the representation in equation (26), Lemma 2 iv) implies

that

S̄n+1 �ew S̄n ⇔ L̄vn+1 �icx L̄vn for all α ∈ (0, 1). (60)

Using Lemma 2 i), we conclude

S̄n+1 �ew S̄n ⇔ −L̄vn+1 �ssd −L̄vn for all α ∈ (0, 1). (61)

Furthermore, note that Wi,n = η(−L̄vn) and −L̄vn = η−1(Wi,n) with η(x) = w0,i − π + x and

η−1(y) = y−w0,i + π. Since both functions are increasing and linear (and thus concave), it follows

from equations (54) and (61) that

S̄n+1 �ew S̄n ⇔ Wi,n+1 �ssd Wi,n for all α ∈ (0, 1). (62)

�

Proof of Corollary 1: We have to show that the Assumptions A1 and A5 or Assumption A6

imply Assumption A4, then the result follows from Proposition 2.

We first consider the combination of Assumptions A1 and A5: Given that E
[
Z2] < ∞, we

can define Z∗ := Z−E[Z]
σ[Z] . Then, it holds that Sn

d= E[Sn] + σ[Sn] · Z∗ for all n ∈ N. Due to the
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translation invariance and the positive homogeneity of VaR and AVaR, this implies

VaRα

[
S̄n
]

= E
[
S̄n
]

+ σ[S̄n] ·VaRα[Z∗] , (63)

AVaRα

[
S̄n
]

= E
[
S̄n
]

+ σ[S̄n] ·AVaRα[Z∗] . (64)

We obtain

AVaRα

[
S̄n
]
−VaRα

[
S̄n
]

= σ[S̄n] (AVaRα[Z∗]−VaRα[Z∗]) . (65)

Therefore, Assumption A4 is satisfied due to equation (30), AVaRα[Z∗] ≥ VaRα[Z∗] and σ[S̄n+1] ≤

σ[S̄n]. To see that the latter inequality holds, we note that Assumption A1 implies σ[Xi] = σ for

all i = 1, . . . , n and ρ[Xi, Xj ] = ρ for i 6= j. We thus have

var
[
S̄n
]

= var
[ 1
n
Sn

]
= 1 + (n− 1)ρ

n
σ2 (66)

and therefore var
[
S̄n+1

]
≤ var

[
S̄n
]

due to ρ ≤ 1.

Next, suppose that Assumption A6 holds: Then, it follows from the properties of stable distri-

butions (Nolan, 2020, Lemma 3.3) that Sn =
∑n
i=1Xi

d= dn + cnX with cn = n1/κ and thus

S̄n
d= dn
n

+ n1/κ−1X. (67)

Therefore, the transformation properties of VaR and AVaR imply

AVaRα

[
S̄n
]
−VaRα

[
S̄n
]

= n1/κ−1 · (AVaRα[X]−VaRα[X]) . (68)

Since
dn1/κ−1

dn
= (1/κ− 1) · n1/κ−2 < 0 (69)

for κ ∈ (1, 2] and n > 0, the excess tail risk is decreasing in n. �

Proof of Corollary 2: Under Assumption E1, it holds that −ēn+1 �ssd −ēn. The remaining

assumptions in Corollary 2 imply Wi,n+1 �ssd Wi,n according to Proposition 1 for i) and according

to Proposition 2 for ii). We can thus use equation (55) from Lemma 2 with w(x1, x2) = x1 + x2 to

47



conclude

W e
i,n+1 = Wi,n+1 − ēn+1 �ssd Wi,n − ēn = W e

i,n. (70)

�

Proof of Proposition 3: We introduce S̄invn := S̄n − π R for all n. Then, the average default

loss with investment proceeds can be written as

L̄invn = max(S̄invn − π − c̄n, 0). (71)

For the case in i), we exploit that S̄n+1 �icx S̄n implies

S̄invn+1 �icx S̄invn . (72)

This follows from the independence of S̄n and −π R and the closure property stated in equation (56)

of Lemma 2 with g(x1, x2) = x1 + x2. Given equations (71) and (72), the preference for larger risk

pools follows using the same arguments as in the proof of Proposition 1.

For the case in ii), we first note that log-concavity of the density of R implies that the density

of −π R is also log-concave (Bagnoli and Bergstrom, 2005, Corollary 5 and Theorem 8). With the

Assumptions I2 and I3, we obtain

S̄n+1 �ew S̄n ⇒ S̄invn+1 �ew S̄invn (73)

from the definition of S̄invn and the stability result for excess wealth order under convolutions as

stated in Lemma 2 v). Moreover, it holds that

L̄invn = max(S̄n − π R−Q1−α[S̄n − π R], 0) = max(S̄invn −Q1−α[S̄invn ], 0). (74)

Using S̄invn+1 �ew S̄invn , the SSD-ordering of the corresponding wealth positions can be derived as in

the proof of Proposition 2. �

Proof of Proposition 4: Under the Assumptions G1 and G2, (f(X1), . . . , f(Xn)) is a col-

lection of independent and identically distributed random variables with E[|f(Xi)|] < ∞ for all

i = 1, . . . , n. Therefore, we obtain from Lemma 1 that S̄fi,n+1 �icx S̄
f
i,n.
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We first consider the case in i), i.e. c̄i,n = c: Then, ψ(x) = max(x−π−c, 0) is non-decreasing and

convex. Therefore, L̄fi,n defined in equation (42) satisfies L̄fi,n+1 = ψ(S̄fi,n+1) �icx ψ(S̄fi,n) = L̄fi,n.

With L̄∗i,n = −L̄fi,n, Lemma 2 i) implies

L̄∗i,n+1 = −L̄fi,n+1 �ssd −L̄
f
i,n = L̄∗i,n. (75)

Next, we introduce hi,x : R→ R with

hi,x(l∗) = w0,i − π − x+ f(x)− g(−l∗, f(x)). (76)

It is not difficult to see that hi,x is an increasing and concave function of l∗ for all x ∈ R. From

equation (75) and Lemma 2 ii), we thus obtain hi,x(L̄∗i,n+1) �ssd hi,x(L̄∗i,n) for all x ∈ R. Us-

ing equation (45), it follows that

E
[
u(W g

i,n+1) | Xi = x
]

= E
[
u(hi,x(L̄∗i,n+1))

]
≥ E

[
u(hi,x(L̄∗i,n))

]
= E

[
u(W g

i,n) | Xi = x
]

(77)

for all increasing and concave functions u and all x ∈ R. The law of iterated expectations therefore

implies W g
i,n+1 �ssd W

g
i,n.68

Next, we turn to the case ii), i.e., c̄i,n = VaRα

[
S̄fi,n − π

]
: In this case, it holds that

L̄fi,n = max(S̄fi,n − π −VaRα

[
S̄fi,n − π

]
, 0) = max(S̄fi,n −Q1−α[S̄fi,n], 0). (78)

From Lemma 2 iv) and equation (78), we conclude

S̄fi,n+1 �ew S̄
f
i,n ⇔ L̄fi,n+1 �icx L̄

f
i,n for all α ∈ (0, 1). (79)

To prove the preference for larger risk pools, we can proceed as in part i). �

Proof of Proposition 5: We first consider case i) with proportional capital requirements. Under

the Assumptions H1 and H2, the premium can be rewritten as πi = E[Xi] + l = µi + l for all
68This argument is related to closure of SSD under mixtures as stated in Shaked and Shanthikumar (2007, Theorem

4.A.8).
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i = 1, . . . , n. With cn = n c, we obtain

Di,n = 1
n

max


n∑
j=1

(µj + Zj)− n c−
n∑
j=1

(µj + l), 0

 = max
{
Z̄n − c− l, 0

}
. (80)

Defining w′0,i := w0,i − µi and π′ := l, we can represent the policyholder’s wealth as

W h
i,n = w0,i − (µi + l)−max

{
Z̄n − c− l, 0

}
(81)

= w′0,i − π′ −max
{
Z̄n − c− π′, 0

}
. (82)

The result in part i) thus follows from Proposition 1 as the distribution of (Z1, . . . , Zn) is exchange-

able.

If the available equity is given by cn = VaRα

[
Sn −

∑n
j=1 πj

]
, then

Di,n = 1
n

max

Sn −VaRα

Sn − n∑
j=1

πj

− n∑
j=1

πj

 (83)

= 1
n

max


n∑
j=1

(µj + Zj)−VaRα

 n∑
j=1

(µj + Zj)

 = max
{
Z̄n −VaRα

[
Z̄n
]
, 0
}
. (84)

We can thus represent the policyholder’s wealth as

W h
i,n = w0,i − πi −max

{
Z̄n −VaRα

[
Z̄n
]
, 0
}
. (85)

Given this representation, the result in part ii) follows as in the proof of Proposition 2.

Proof of Proposition 6: We consider each of the Assumptions H6 and H7 individually and extend

the arguments used in the proof of Corollary 1.

i) Under the Assumptions H5 and H6, we can introduce Z∗ = Z
σ[Z] and rely on the arguments

in the equations (63)-(65). It follows that S̄n+1 �ew S̄n if var
[
S̄n+1

]
≤ var

[
S̄n
]
. Since the

correlations are zero, this condition is satisfied if

1
(n+ 1)2

n+1∑
j=1

σ2
j ≤

1
n2

n∑
j=1

σ2
j . (86)

ii) Under the Assumptions H5 and H7, we obtain from results on sums of random variables with
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independent stable distributions (Nolan, 2020, p. 17f.) that

S̄n
d= µ+

 n∑
j=1

1
nκ
σκj

1/κ

Z. (87)

Similar to equation (68), we conclude

AVaRα

[
S̄n
]
−VaRα

[
S̄n
]

=

 n∑
j=1

1
nκ
σκj

1/κ

(AVaRα[Z]−VaRα[Z]). (88)

S̄n+1 �ew S̄n is thus equivalent to

n+1∑
j=1

1
(n+ 1)κ σ

κ
j ≤

n∑
j=1

1
nκ

σκj . (89)

We finally note that the given assumptions also ensure E
[
S̄n+1

]
= E

[
S̄n
]
. Therefore, S̄n+1 �ew

S̄n implies S̄n+1 �icx S̄n as already noted in Section 3.3. We can thus prove the policyholder’s

preference for larger risk pools along the lines of the Propositions 1 and 2. �
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Johnson, Herb, and René Stulz, 1987, The Pricing of Options with Default Risk, The Journal of
Finance 42, 267–280.

Kou, Steven, and Xianhua Peng, 2016, On the Measurement of Economic Tail Risk, Operations
Research 64, 1056–1072.

Landsman, Zinoviy M., and Emiliano A. Valdez, 2003, Tail Conditional Expectations for Elliptical
Distributions, North American Actuarial Journal 7, 55–71.

Laux, Christian, and Alexander Muermann, 2010, Financing risk transfer under governance prob-
lems: Mutual versus stock insurers, Journal of Financial Intermediation 19, 333–354.

Levy, Haim, 1992, Stochastic Dominance and Expected Utility: Survey and Analysis, Management
Science 38, 555–593.

Mahul, Olivier, and Brian D. Wright, 2004, Implications of Incomplete Performance for Optimal
Insurance, Economica 71, 661–670.

Mahul, Olivier, and Brian D. Wright, 2007, Optimal coverage for incompletely reliable insurance,
Economics Letters 95, 456–461.

Marshall, Albert W., Ingram Olkin, and Barry C. Arnold, 2011, Inequalities: Theory of Majoriza-
tion and Its Applications (Springer, New York).
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I Asymptotic Results

We investigate the asymptotic impact of default risk on the policyholders’ utility in a setting that

is similar to our baseline analysis in Section 3.

For the specification of the contract type and the individual default loss, we again rely on the

Assumptions A2 and A3. However, we focus on the standard expected utility model (gi(p) = p)

and we replace Assumption A1 with the following conditions on the loss distribution and the utility

function.

Assumption L1 The losses (Xj)j∈N are identically distributed and independent with E[|Xj |] <∞.

ui is continuous and there is random variable Zi ≥ 0 with |ui(Wi,n)| ≤ Zi, for all n, and E[|Zi|] <

∞.

Accordingly, we consider IID instead of exchangeable risks and additionally impose a bounded-

ness assumption on the utility from buying the vulnerable insurance contract that avoids technical

convergence problems.1

For our asymptotic analysis, we do not need to specify the exact dependence of the equity

capital on n. Instead we only assume that the average capital per policyholder converges to a limit

with limn→∞ c̄n = ca <∞.

Building on these assumptions, we can establish the following asymptotic result:

Proposition I.1 Suppose that the Assumptions L1, A2 and A3 hold and that ca ≥ E[Xi] − π.

Then, the expected utility of the vulnerable contract converges to the utility of the safe insurance

contract, i.e.,

lim
n→∞

E[ui(Wi,n)] = u(W s
i ). (I.1)

Proof: We first note that a strong law of large numbers applies to (Xi)i∈N under Assumption L1

(see, e.g., Theorem 5.17 in Klenke, 2014). Therefore, the average total claim amount converges to
1Alternatively, we could impose restrictions of the form sup{E[u(Wi,n)] , n ∈ N} < ∞ and sup{var[u(Wi,n)] , n ∈

N} < ∞ that ensure uniform integrability or we could impose a boundedness restriction on the risks that are pooled.
The latter approach is common in the theory of insurance demand because it avoids bankruptcy issues on the level
of the individual policyholder (Schlesinger, 2013, p. 168).
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the expected claim amount, i.e.,

S̄n = 1
n

n∑
i=1

Xi
a.s.−→ E[Xi] . (I.2)

Second, the continuity of x 7→ max(x− π − c̄n, 0) implies

L̄n = max(S̄n − π − c̄n, 0) a.s.−→ max(E[Xi]− π − ca, 0) = 0. (I.3)

For the last equality, we use that limn→∞ c̄n = ca ≥ E[Xi]− π. From equation (I.3), it follows that

Wi,n = w0,i − π − L̄n
a.s.−→ w0,i − π = W s

i . (I.4)

Since ui is continuous, the utility of the risky contract satisfies ui(Wi,n) a.s.−→ ui(W s
i ).

Third, given that |ui(Wi,n)| is bounded by an integrable random variable according to Assump-

tion L1, we can invoke Lebesgue’s convergence theorem (Klenke, 2014, Corollary 6.26) to conclude

lim
n→∞

E[ui(Wi,n)] = E
[

lim
n→∞

ui(Wi,n)
]

= ui(W s
i ), (I.5)

which corresponds to equation (I.1). �

Accordingly, the disutility from the default loss asymptotically goes to zero and the expected

utility of buying the vulnerable contract reaches the level of the safe insurance contract for large

pools.

If the equity capital increases proportionally with the pool size, i.e., if c̄n = c for all n ∈ N,

then ca ≥ E[Xi] − π is obviously equivalent to c ≥ E[Xi] − π. This result can be illustrated by

reconsidering Example 2.

Example I.1 Under the assumptions made in Example 2, the expected utility of buying a vulnerable

insurance contract is given by equations (23) and (IV.8). Furthermore, ca ≥ E[Xi] − π from

Proposition I.1 implies c ≥ µ − π and l ≥ 0 in equation (IV.8). Using these results, it is not

difficult to show that limn→∞ML̄cn
(γi) = 1 and thus

lim
n→∞

E[ui(Wi,n)] = 1− exp(−γi (w0,i − π)) = E[ui(W s
i )] . (I.6)
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This convergence was illustrated in Panel A of Figure 1 in the main text.

Proposition I.1 also applies to VaR-based solvency standards. In contrast to our finite sample

results, the additional excess wealth order condition is not required. To illustrate the convergence for

the VaR-based case, we again consider independent normally distributed losses and an exponential

utility function.

Example I.2 Under the assumptions presented in part i) of Example 3, we can explicitly compute

the limit of the expected utility from the results in equations (27) and (IV.37). We obtain

lim
n→∞

ML̄vn
(γi) = exp(0)

[
1− Φ

(
Φ−1(1− α)

)]
+ (1− α) = 1 (I.7)

and therefore again limn→∞ E[ui(Wi,n)] = E[ui(W s
i )]. This convergence was illustrated in Panel A

of Figure 2 in the main text.

In this context, it is important to note that our asymptotic results only apply to the case of

independent risks. They are thus not applicable to the setting considered in part iv) of Exam-

ple 3, where we documented a monotonic decrease of the policyholders’ utility under a VaR-based

regulation.

II Relations to Majorization Theory

In addition to the definition of the majorization ordering a ≺ b itself given in Section 3.1, we need

to introduce the notion of Schur-convexity. Following Marshall et al. (2011, Definition 3.A.1), a

function is Schur-convex if it preserves the ordering of majorization; that is, a function φ : Rn → R

is Schur-convex if

a ≺ b ⇒ φ(a) ≤ φ(b). (II.1)

In particular, every function that is symmetric and convex is also Schur-convex (Marshall et al.,

2011, Proposition 3.C.2).

We first present an alternative proof of Lemma 1 based on majorization theory:

Alternative Proof of Lemma 1: We have to show that E
[
u(−S̄n+1)

]
≥ E

[
u(−S̄n)

]
for every

increasing concave function u : R → R under Assumption A1. For this purpose, we rely on the
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result 11.B.2.C from Marshall et al. (2011), which states that the function ψ : Rn → R with

ψ(a1, . . . , an) = E
[
g

(
n∑
i=1

aiYi

)]
(II.2)

is symmetric and convex if the random variables (Y1, . . . , Yn) are exchangeable and g : R → R is

continuous and convex. In this case, ψ is also Schur-convex. By applying this result to g(x) = −u(x)

and the exchangeable random variables (−X1, . . . ,−Xn+1), we obtain

a ≺ b ⇒ E
[
−u

(
−
n+1∑
i=1

aiXi

)]
≤ E

[
−u

(
−
n+1∑
i=1

biXi

)]
. (II.3)

From

a =
( 1
n+ 1 , . . . ,

1
n+ 1 ,

1
n+ 1

)
≺

( 1
n
, . . . ,

1
n
, 0
)

= b, (II.4)

we can thus conclude that

E
[
−u

(
− 1
n+ 1

n+1∑
i=1

Xi

)]
≤ E

[
−u

(
− 1
n

n∑
i=1

Xi

)]
, (II.5)

which can be rewritten as E
[
u(−S̄n+1)

]
≥ E

[
u(−S̄n)

]
. �

Lemma 1 is also closely related to Proposition B.2.b in Marshall et al. (2011), which can already

be found as Corollary 3 in Marshall and Proschan (1965). We next present an alternative reasoning

for the proof Proposition 1, again based on majorization theory.

Alternative Proof of Proposition 1: As in the case of Lemma 1, we rely on 11.B.2.C from

Marshall et al. (2011). In particular, we again exploit the Schur-convexity of the function ψ defined

in equation (II.2). In this case, we choose Yi = Xi, i = 1, . . . , n, and define g as follows

g(s) := −u(w0 − π −max(s− π − c, 0)). (II.6)

The convexity of this function can be seen by decomposing it into g(s) = φ(η(s)) with

φ(y) = −u(y) and η(s) = w0 − π −max(s− π − c, 0). (II.7)
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Here, (i) φ is decreasing and convex and (ii) η is concave (and decreasing), which implies the

convexity of their composition. Under our Assumptions A2 and A3, it holds that −E[u(Wi,n)] =

ψ
(

1
n , . . . ,

1
n

)
. Therefore, we obtain from equation (II.4) that

E[u(Wi,n+1)] ≥ E[u(Wi,n)] (II.8)

for all increasing and concave utility functions u. �

Alternative Proof of Corollary 1 for Independent or Uncorrelated Losses: Suppose

that Assumptions A1 and A5 or Assumption A6 are satisfied. If the losses are independent (or

uncorrelated), it can be shown that

n∑
i=1

aiXi
d= dn +

(
n∑
i=1

aδiσ
δ

)1/δ

· Z (II.9)

with a random variable Z whose distribution does not depend on n. This follows from Nolan (2020,

p. 18) for the case of stable distributions and, in this case, δ corresponds to the stability index, i.e.,

δ = κ. If var[Xi] <∞, equation (II.9) follows from var[
∑n
i=1 aiXi] =

∑n
i=1 a

2
iσ

2 with σ2 = var[Xi]

and it holds that δ = 2. From the translation invariance and positive homogeneity of VaRα and

AVaRα, we thus obtain

AVaRα

[
n∑
i=1

aiXi

]
−VaRα

[
n∑
i=1

aiXi

]
=
(

n∑
i=1

aδi

)1/δ

σ (AVaRα[Z]−VaRα[Z]) . (II.10)

Since the function ψ(a1, . . . , an) =
∑n
i=1 a

δ
i is Schur-convex for δ > 1 and ai ≥ 0, i = 1, . . . , n

(Marshall et al., 2011, Proposition 3.C.1), we can use equation (II.4) to show that the excess

wealth order condition in Assumption A4 is satisfied. �

Finally, we prove the following result on the optimality of sharing the default losses equally

among identical policyholders for a given pool size n.

Proposition II.1 Suppose that Assumption A2 is satisfied. Let Ln ≥ 0 denote the total default

loss from a pool of size n and let ai denote the fraction of Ln that is assigned to policyholder i,

i.e., Di,n = ai Ln with ai ≥ 0, i = 1, . . . , n, and
∑n
i=1 ai = 1. If all policyholders have identical

preferences ui = u and initial wealth levels w0,i = w0, i = 1, . . . , n, then the loss allocation that

6



maximizes the aggregate expected utility, i.e.,
∑n
i=1 E[u(Wi,n)], is given by ai = 1

n for all i = 1, . . . , n.

Proof of Proposition II.1: First, note that we can write the aggregate expected utility under

the given assumptions as

n∑
i=1

E[u(Wi,n)] = E
[
n∑
i=1

ui(w0,i − π − ai Ln)
]

(II.11)

= E
[
n∑
i=1

u(w0 − π − aiLn)
]
. (II.12)

Next, we introduce the function ψ(a1, . . . , an) = −
∑n
i=1 u(w0 − π − ail) with l ∈ R and compute

its second derivatives:

∂2ψ

∂a2
i

= −u′′(w0 − π − ai l) (−l)2 and ∂2ψ

∂ai∂aj
= 0 for i 6= j. (II.13)

From the concavity of the utility function u, it follows that ∂2ψ
∂a2
i
≥ 0, such that ψ is convex for all

l. By construction, ψ is also symmetric. These properties imply that the function

Φ(a1, . . . , an) = E[ψ(a1, . . . , an)] (II.14)

is Schur-convex (if the expectation exists). Furthermore, according to Marshall et al. (2011, p. 9),

it holds that

( 1
n
, . . . ,

1
n

)
≺ (a1, . . . , an) (II.15)

for all ai ≥ 0, i = 1, . . . , n, with
∑n
i=1 ai = 1. Therefore, we obtain

E
[
n∑
i=1

u

(
w0 − π −

1
n
Ln

)]
≥ E

[
n∑
i=1

u(w0 − π − aiLn)
]
, (II.16)

which concludes the proof. �

Note that Proposition II.1 is related to the literature on optimal risk exchanges going back to

the seminal work of Borch (1962). See for example Lemma 2.1 in Knispel et al. (2016) for a similar

result and an overview on this literature.
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III Selected Results on Moment Generating Functions

The moment generating function of a random variable X is defined as MX(γ) = E[exp(γ X)]. If X

is normally distributed with expected value µ and variance σ2, i.e. X ∼ N (µ, σ2), it is well known

that

MX(γ) = exp
(
γ µ+ 1

2 γ
2 σ2

)
. (III.1)

If X follows a mixture of normals with K components, we can introduce a state indicator Y with

X|Y = k ∼ N (µk, σ2
k) and P[Y = k] = pk for k = 1, . . . ,K. Then, the moment generating function

of X can be written as

MX(γ) =
K∑
k=1

E[exp (γ X) | Y = k] P[Y = k] (III.2)

=
K∑
k=1

pk exp
(
µk γ + 1

2γ
2σ2
k

)
. (III.3)

We define the (upper) partial moment generating function of X as

MX,t(γ) = E[exp(γ X)1(X > t)] . (III.4)

If again X ∼ N (µ, σ2), then

MX,t(γ) =
∫ ∞
t

exp(γ x) 1
σ
ϕ

(
x− µ
σ

)
dx (III.5)

=
∫ ∞
t̃

exp(γ µ) exp(γ σ z)ϕ(z)dz (III.6)

=
∫ ∞
t̃

exp
(
γ µ+ 1

2σ
2γ2
)
ϕ(z − γ σ)dz (III.7)

= MX(γ)
[
1− Φ

(
t− µ
σ
− γ · σ

)]
, (III.8)

where we use z = x−µ
σ and t̃ = t−µ

σ .
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For the case of a normal mixture with K components, this implies

MX,t(γ) =
K∑
k=1

E[exp (γ X)1(X > t) | Y = k] P[Y = k] (III.9)

=
K∑
k=1

pk exp
(
µk γ + 1

2γ
2σ2
k

)(
1− Φ

(
t− µk
σk

− γ σk
))

. (III.10)

Furthermore, we need the (upper) partial moment generating function of a random variable X

with a Gamma distribution with shape parameter a and scale parameter b. In this case, we write

X ∼ G(a, b) and note that X has the probability density function

fX(x) = 1
Γ(a) b

−a xa−1 exp
(
−x
b

)
for x ≥ 0. (III.11)

The upper partial moment generating function can thus be obtained from

MX,t(γ) =
∫ ∞

0
exp(γ x)1(x > t) 1

Γ(a)b
−axa−1 exp

(
−x
b

)
dx (III.12)

=
∫ ∞
t

1
Γ(a)b

−axa−1 exp
(
−x
b

(1− b γ)
)
dx. (III.13)

For 1− bγ > 0, i.e. γ < 1
b , we can substitute y = x(1− b γ) and obtain

MX,t(γ) = (1− b γ)−a
∫ ∞
t (1−b γ)

1
Γ(a)b

−aya−1 exp
(
−y
b

)
dy (III.14)

= (1− b γ)−a P[X > t (1− b γ)] (III.15)

= (1− b γ)−a [1−G(t (1− b γ); a, b)] , (III.16)

where G( ·, ; a, b) is the cdf of a Gamma distribution with parameters a and b. For t = 0, we obtain

the well-known results MX(γ) = (1− b γ)−a.
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IV Details Examples

General Remarks:

For the examples with exponential utility, we need to compute the moment generating function of

L̄n = max(S̄n − π − c̄n, 0), which can be decomposed as follows

ML̄n
(γi) =E

[
exp

(
γi L̄n

)
1

(
L̄n > 0

)]
+ E

[
exp

(
γi L̄n)

)
1

(
L̄n ≤ 0

)]
(IV.1)

= exp(−γi (π + c̄n))E
[
exp

(
γi S̄n

)
1(S̄n > π + c̄n)

]
+ P

[
S̄n ≤ π + c̄n

]
(IV.2)

= exp(−γi (π + c̄n))MS̄n,π+c̄n(γi) + P
[
S̄n ≤ π + c̄n

]
, (IV.3)

where MS̄n,π+c̄n denotes the upper partial moment generating function of S̄n for the threshold

t = π + c̄n. Furthermore, we note for the case of an exponential utility function that

dE[ui(Wi,n)]
dn

= − exp (−γi (w0,i − π))
dML̄cn

(γi)
dn

, (IV.4)

which shows that E[ui(Wi,n)] is non-decreasing in n if
dML̄cn

(γi)
dn ≤ 0.

Details Example 2

i) Normal distribution: With S̄n ∼ N (µ, 1
nσ

2), it holds that

P
[
S̄n ≤ π + c̄n

]
= P

[
Z ≤ π + c̄n − µ

σ√
n

]
= Φ

(√
n ln
σ

)
, (IV.5)

where Z ∼ N (0, 1) and ln = π + c̄n − µ. For the computation of MS̄n,π+c̄n(γi), we use

equation (III.8) with

π + c̄n − µ
σ√
n

=
√
n (π + c̄n − µ)

σ
=
√
n ln
σ

and − γi σ[S̄n] = −γi
σ√
n
. (IV.6)

This implies

ML̄n
(γi) = exp

(
−γi ln + 1

2 γ
2
i

σ2

n

)
·
[
1− Φ

(√
n ln
σ
− γi

σ√
n

)]
+ Φ

(√
n ln
σ

)
. (IV.7)
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With l = π + c− µ, it follows that

ML̄cn
(γi) = exp

(
−γi l + 1

2 γ
2
i

σ2

n

)
·
[
1− Φ

(√
n l

σ
− γi

σ√
n

)]
+ Φ

(√
n l

σ

)
. (IV.8)

To study the relationship between n and E[ui(Wi,n)], we compute

dML̄cn
(γi)

dn
= exp

(
−γi l + 1

2 γ
2
i

σ2

n

)
· 1

2 γ
2
i

σ2

n2 · (−1) ·
[
1− Φ−1

(√
n l

σ
− γi

σ√
n

)]

+ exp
(
−γi l + 1

2 γ
2
i

σ2

n

)
· (−1) · ϕ

(√
n l

σ
− γi

σ√
n

)
·
(

l

2
√
nσ

+ 1
2 γi σn

−3/2
)

+ ϕ

(√
n l

σ

)
· l

2
√
nσ

(IV.9)

= exp
(
−γi l + 1

2 γ
2
i

σ2

n

) {1
2 γ

2
i

σ2

n2 · (−1) ·
[
1− Φ

(√
n l

σ
− γi

σ√
n

)]

+ (−1) · ϕ
(√

n l

σ
− γi

σ√
n

)
· 1

2 γi σn
−3/2

}
+ l

2
√
nσ

[
ϕ

(√
n l

σ

)
− exp

(
−γi l + 1

2 γ
2
i

σ2

n

)
· ϕ
(√

n l

σ
− γi

σ√
n

)]
. (IV.10)

The last term vanishes because of

exp
(
−γi l + 1

2 γ
2
i

σ2

n

)
· ϕ
(√

n l

σ
− γi

σ√
n

)
= ϕ

(√
n l

σ

)
, (IV.11)

which follows from the form of the density ϕ(z) and

−γi l + 1
2 γ

2
i

σ2

n
−1

2

(√
n l

σ
− γi

σ√
n

)2

=− γi l + 1
2 γ

2
i

σ2

n
− 1

2

(√
n l

σ

)2

+ γi l −
1
2γ

2
i

σ2

n
= −1

2

(√
n l

σ

)2

. (IV.12)

Therefore, we obtain

dML̄cn
(γi)

dn
= exp

(
−γi l + 1

2 γ
2
i

σ2

n

)
·
{1

2 γ
2
i

σ2

n2 · (−1) ·
[
1− Φ

(√
n l

σ
− γi

σ√
n

)]

+ (−1) · ϕ
(√

n l

σ
− γi

σ√
n

)
· 1

2 γi σn
−3/2

}
.

(IV.13)
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This implies

dML̄cn
(γi)

dn
≤0 and thus dE[ui(Wi,n)]

dn
≥ 0 (IV.14)

given equation (IV.4).

ii) Gamma distribution: If Xi ∼ G(a, b), it follows from the well-known convolution properties

of the Gamma distribution that S̄n ∼ G
(
na, bn

)
. Using equation (III.16) derived in Section III,

we obtain

ML̄n
(γi) = exp(−γi (π + c̄n))

(
1− b

n
γi

)−na
·
[
1−G

(
(π + c̄n)

(
1− b

n
γi

)
;na, b

n

)]
+G

(
π + c̄n;na, b

n

)
. (IV.15)

With c̄n = c, this implies

ML̄cn
(γi) = exp(−γi (π + c))

(
1− b

n
γi

)−na [
1−G

(
(π + c)

(
1− b

n
γi

)
;na, b

n

)]
+G

(
π + c;na, b

n

)
. (IV.16)

iii) Independent Mixtures: To derive the distribution of Sn under the mixture assumption

introduced in part iii), we rely on the following characterization of a normal mixture. Let

Y1, . . . , Yn denote a series of state variables that are independent and identically distributed

with P[Yi = L] = pL and P[Yi = H] = pH for all i ∈ N, where pL + pH = 1. Furthermore,

the distribution of Xi only depends on Yi (Xi is independent of Yj , j 6= i) and the conditional

distribution of Xi is given by

Xi|Yi = L ∼ N (µL, σ2
L) and Xi|Yi = H ∼ N (µH , σ2

H). (IV.17)

Xi is thus normally distributed conditional on Yi with state-specific mean and variance pa-

rameters (µL, σ2
L) and (µH , σ2

H). Under these assumptions the unconditional distribution of

Xi satisfies

P[Xi ≤ x] = pL Φ(x, µL, σ2
L) + pH Φ(x, µH , σ2

H). (IV.18)
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We next introduce an indicator for the occurrence of the high loss state

Hi := 1(Yi = H) =


0 if Yi = L

1 if Yi = H

(IV.19)

and the counting variable Cn =
∑n
i=1Hi. Then, Hi is a Bernoulli random variable with

P[Hi = 1] = P[Yi = H] = pH and Cn follows a Binomial distribution. This implies

P[Cn = k] =
(
n

k

)
pkH (1− pH)n−k =

(
n

k

)
pn−kL pkH , k = 0, . . . , n. (IV.20)

By construction, it holds that
∑n
i=1 1(Yi = H) +

∑n
i=1 1(Yi = L) = n. For the conditional

distribution of Sn given that Cn = k, we obtain

Sn|Cn = k ∼ N ((n− k)µL + k µH , (n− k)σ2
L + k σ2

H). (IV.21)

We conclude

P[Sn ≤ x] =
n∑
k=0

pn,k Φ(x, µn,k, σ2
n,k), (IV.22)

where

µn,k = (n− k) · µL + k · µH , (IV.23)

σ2
n,k = (n− k) · σ2

L + k · σ2
H , (IV.24)

pn,k =
(
n

k

)
· pn−kL · pkH (IV.25)

for k = 0, . . . , n. From the behavior of mixtures under linear transformations, it then follows

that

P
[
S̄n ≤ x

]
=

n∑
k=0

p̄n,k Φ(x; µ̄n,k, σ̄2
n,k) (IV.26)

with µ̄n,k = 1
nµn,k, σ̄

2
n,k = 1

n2σ
2
n,k and p̄n,k = pn,k for k = 0, . . . , n. Given this distribution, we

can calculate ML̄cn
(γi) using the decomposition shown in equation (IV.3) and the general form

of upper partial moment generating function for normal mixtures shown in equation (III.10).
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iv) Dependent Mixtures: Under a mixture assumption with a common state indicator Y , the

distribution of Sn is also a two-state mixture with

P[Sn ≤ x] = pLΦ
(
x;nµL, n σ2

L

)
+ pHΦ

(
x;nµH ;nσ2

H

)
. (IV.27)

We can thus again evaluate the expected utility from buying a vulnerable contract based on

the decomposition in equation (IV.3) and the upper partial moment generating function from

equation (III.10) as in part iii) of this example.

v) t Distribution: To evaluate the mean-variance utility for Wi,n = w0,i−π−max(S̄n−π−c̄n, 0),

we introduce

S̄∗n := S̄n − π − c̄n (IV.28)

and rewrite the wealth from buying a vulnerable insurance contract as

Wi,n = w0,i − π − 1(S̄∗n > 0) · S̄∗n. (IV.29)

Based on this representation, we conclude that

E[Wi,n] = w0,i − π − E
[
1(S̄∗n > 0) · S̄∗n

]
, (IV.30)

var[Wi,n] = E
[
1(S̄∗n > 0) · (S̄∗n)2

]
−
(
E
[
1(S̄∗n > 0) · S̄∗n)

])2
, (IV.31)

where the last equation follows from 1(A)2 = 1(A). We can thus compute the expected utility

by calculating the first and second partial moment of S̄∗n.

We first show how to compute these moments for a t distribution with location parameter m =

0, scale parameter s = 1 and degree-of-freedom parameter ν > 2, i.e., Z ∼ T (0, 1, ν). In this

case, equation (3.5) from Winkler et al. (1972) and E[1(Z > k)Zm] = E[Zm]−E[1(Z ≤ k)Zm]

imply

E[1(Z > k)Z] = (ν + k2)
ν − 1 ft(k; ν), (IV.32)

E
[
1(Z > k)Z2

]
= k (ν + k2) ft(k; ν) + ν (1− Ft(z; ν))

ν − 2 (IV.33)
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with ft(z; ν) and Ft(z; ν) denoting the probability density function and the cumulative distri-

bution function of a t distribution with ν degrees of freedom. To account for arbitrary location

and scale parameters, we note for X = m+ sZ, s > 0, that

E[1(X > k)X] = m · P[Z > k∗] + s · E[1(Z > k∗)Z] (IV.34)

E
[
1(X > k)X2

]
= m2 · P[Z > k∗] + 2ms · E[1(Z > k∗)Z] + s2 · E

[
1(Z > k∗)Z2

]
(IV.35)

with k∗ = k−m
s .

In our example, it holds that S̄n ∼ T (µ, 1
nσ

2, ν) and thus

S̄∗n ∼ T (µ− π − c, 1
n
σ2, ν). (IV.36)

We can therefore use the results presented in equations (IV.30)-(IV.35) with m = µ − π − c

and s = 1√
n
σ to evaluate the mean-variance utility.

Details Example 3

i) Normal Distribution: To compute the moment generating function of L̄vn, we apply equa-

tion (IV.7) with

ln = VaRα

[
S̄n
]
− µ = µ+ σ√

n
Φ−1(1− α)− µ = σ√

n
Φ−1(1− α)

and obtain

ML̄vn
(γi) = exp

(
−γi

σ√
n

Φ−1(1− α) + 1
2 γ

2
i

σ2

n

)

·
[
1− Φ

(
Φ−1(1− α)− γi

σ√
n

)]
+ (1− α). (IV.37)
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For the derivative of this function with respect to n, it holds that

dML̄vn
(γi)

dn
= exp

(
−γi

σ√
n

Φ−1(1− α) + 1
2 γ

2
i

σ2

n

)
(IV.38)

·
{(1

2γiσ n
−3/2 Φ−1(1− α)− 1

2 γ
2
i

σ2

n2

)
·
[
1− Φ

(
Φ−1(1− α)− γi

σ√
n

)]
− ϕ

(
Φ−1(1− α)− γi

σ√
n

) 1
2 γi σ n

−3/2
}
.

With z̃ = Φ−1(1− α)− γi σ√n , this can be rewritten as

dML̄vn
(γi)

dn
= exp

(
−γi

σ√
n

Φ−1(1− α) + 1
2 γ

2
i

σ2

n

)

· 1
2 γi σ n

−3/2 (z̃ (1− Φ(z̃))− ϕ(z̃)) . (IV.39)

We next show that

z̃ (1− Φ(z̃)) < ϕ(z̃). (IV.40)

Therefore, we first note that ϕ′(x) = −xϕ(x) = −xΦ′(x) and

ϕ(x) = −
∫ x

−∞
sΦ′(s) ds = −

(
[sΦ(s)]x−∞ −

∫ x

−∞
Φ(s) ds

)
. (IV.41)

With lims→−∞ sΦ(s) = 0, this implies

ϕ(x) + xΦ(x) =
∫ x

−∞
Φ(s) ds > 0. (IV.42)

From ϕ(x) = ϕ(−x) and Φ(x) = (1− Φ(−x)), we obtain

ϕ(−x) > −x (1− Φ(−x)). (IV.43)

Choosing x = −z̃ proves equation (IV.40) and thus
dML̄vn

(γi)
dn ≤ 0.

ii) Gamma Distribution: Denoting the quantile function of a Gamma distribution with the

parameters a and b by G−1( · ; a, b), we can write VaRα

[
S̄n
]

= G−1(1−α ;na, bn). For π+ c̄n =

16



VaRα

[
S̄n
]
, we thus obtain from equation (IV.15)

ML̄vn
(γi) = exp

(
−γiG−1

(
1− α; an; b

n

)) (
1− b

n
γi

)−na
[
1−G

(
G−1

(
1− α; an; b

n

) (
1− b

n
γi

)
;na, b

n

)]
+ (1− α). (IV.44)

iii) Independent Mixtures: Given the form of the distribution in equation (IV.26), the VaRα

of S̄n can be determined numerically by solving

n∑
k=0

p̄n,k Φ(VaRα

[
S̄n
]
, µ̄n,k, σ̄

2
n,k) = 1− α. (IV.45)

To calculate ML̄vn
(γi), we again rely on equation (IV.3) in combination with equation (III.10)

for π + c̄n = VaRα

[
S̄n
]
.

iv) Dependent Mixtures: We rely on the same arguments as in part iii) of Example 3 to

compute the VaR and the moment generating function of L̄vn for the mixture distribution

given in equation (IV.27). Furthermore, the unconditional covariance of the risks in the pool

can be calculated as follows

cov [X1, X2] = E[X1X2]− E[X1] E[X2] (IV.46)

= pL E[X1X2 | Y = L] + pH E[X1X2 | Y = H]− (E[X1])2 (IV.47)

= pL E[X1 | Y = L] E[X2 | Y = L]

+ pH E[X1 | Y = H] E[X2 | Y = H]− E[X1]2 (IV.48)

= pL µ
2
L + pH µ

2
H − (pL µL + pH µH)2. (IV.49)

v) t Distribution: To obtain the mean-variance utility with VaR-based capital requirements,

we again use π + c̄n = VaRα

[
S̄n
]
, which implies S̄∗n = S̄n − VaRα

[
S̄n
]

for S̄∗n introduced in

equation (IV.28) and thus

S̄∗n ∼ T (− σ√
n
qt(1− α; ν), 1

n
σ2, ν) (IV.50)
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given that VaRα

[
S̄∗n

]
= µ+ σ√

n
qt(1−α; ν). Accordingly, we can apply the same arguments as

in part v) of Example 2 with m = −qt(1−α; ν) σ√
n

and s = σ√
n

to calculate the mean-variance

utility under the given assumptions.

Details Example 4

i) Normal Distribution: This case is fully covered in the main text.

ii) Gamma Distribution: To compute the AVaRα

[
S̄n
]
, we rely again on S̄n ∼ G(na, bn) and

the following result from Landsman and Valdez (2005, Example 4.2). For X ∼ G(a, b), it holds

that

AVaRα[X] = a b
1−G(VaRα[X] ; a+ 1, b)

1−G(VaRα[X] ; a, b) = a b

α
(1−G(VaRα[X] ; a+ 1, b)) . (IV.51)

Note that (i) Landsman and Valdez (2005) use the (α, β)-parametrization and (ii) TCE[X] =

AVaRα[X] for the Gamma distribution.

iii+iv) Normal Mixtures: Suppose that S̄n follows a K-component normal mixture with the state-

specific parameters µk and σk and a state indicator Y with P[Y = k] = pk for k = 1, . . . ,K.

Then, it holds that

AVaRα

[
S̄n
]

= E
[
S̄n | S̄n > VaRα

[
S̄n
]]

(IV.52)

= 1
α

K∑
k=1

pk E
[
S̄n · 1(S̄n > VaRα

[
S̄n
]
) | Y = k

]
. (IV.53)

The conditional expectations in the last expression correspond to partial expectations for

normally distributed random variables. Using the results of Winkler et al. (1972, p. 292) and

E[Z 1(Z ≤ a)] + E[Z 1(Z > a)] = E[Z], it follows that

E
[
S̄n · 1(S̄n > VaRα

[
S̄n
]
) | Y = k

]
= µk − (−σk ϕ(vk) + µk Φ(vk)) (IV.54)

= σk ϕ(vk) + µk Φ(−vk) (IV.55)

with vk = VaRα[S̄n]−µk
σk

.
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v) t Distribution: For X ∼ T (m, s2, ν), it follows from equations (IV.32) and (IV.34) that

AVaRα[X] = E[X | X > Q1−α[X]] (IV.56)

= m+ s
ν + qt(1− α, ν)2

ν − 1
ft(qt(1− α; ν); ν)

α
. (IV.57)

V Additional Examples

V.1 t Distributions

In this section, we present three additional examples based on symmetric and asymmetric t distri-

butions. These additional examples are modifications of the specification presented in part v) of

the Examples 2 and 3 in the main text. In particular, we consider the following specifications:

a) We investigate the pooling effects obtained with independent risks having the same marginal

distribution as the multivariate t distribution in the Examples 2 and 3. We thus assume that the

risks are independent and identically distributed with Xi ∼ T (µ, σ2, ν), where µ = 2, σ = 4/
√

2

and ν = 4.

b) Our second additional example with fat-tailed risks builds on the skewed t distribution proposed

by Hansen (1994). We again assume that the risks are independent and choose the following

parameters µ = 2, σ = 4, ν = 4 and the asymmetry parameter λ = 0.75.2 These values imply

E[Xi] = 2, σ[Xi] = 4 and a skewness coefficient of 3.63. As in our baseline example, the kurtosis

is not finite.

c) We finally consider a slight variation of the assumptions used in part a), where we truncate the

distribution of Xi at −20 and +20. Introducing these bounds on the support of Xi allows us to

model the policyholder’s risk preferences with a power utility function.

Furthermore, we choose w0,i = 10, π = 2 and c = 1 or α = 5% to determine the available

equity capital as in the Examples 2 and 3. For the additional specifications in part a) and b), we

again rely on the mean-variance preferences given in equation (25). In the case of the truncated t

2We use a different scale parameter because the density of the skewed t distribution is defined such that the scale
parameter directly corresponds to the standard deviation of the distribution (for ν > 2).
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distribution, we apply the power utility function given by

ui(w) = (w + ki)1−ηi

1− ηi
(V.1)

with ki = 20 + π − w0,i = 12 and ηi = 5. In contrast to our baseline example with a multi-

variate t distribution, we rely on simulation techniques to determine the distribution of S̄n and

the corresponding certainty equivalents. In particular, we simulate 106 realizations of the losses

(X1, . . . , Xn) for each pool size n. Our results on the relation between the pool size and the poli-

cyholder’s expected utility from buying a vulnerable contract under volume-based and VaR-based

capital requirements are presented in the Figures V.1 and V.2. Similar to the corresponding base-

line examples using the multivariate t distribution and mean-variance preferences, we find a positive

relation between the pool size and the policyholder’s utility in all three cases.

V.2 Discrete Distribution

We finally provide an additional example for the occurrence of adverse pooling effects under VaR-

based capital requirements using a simple discrete loss distribution. In particular, we assume that

the losses (X1, . . . , Xn) are independent and identically distributed with

P[Xi = 0] = pL and P[Xi = h] = pH (V.2)

for i = 1, . . . , n. Then, we can rewrite Xi as Xi = hZi with a Bernoulli random variable Zi, i.e.,

P[Zi = 0] = pL and P[Zi = 1] = pH . Given these assumptions, Bn :=
∑n
i=1 Zi has a Binomial

distribution and it holds that

S̄n = k h

n
⇔ Bn = k (V.3)

for k = 0, . . . , n, which implies

P
[
S̄n = h k

n

]
= P[Bn = k] =

(
n

k

)
· pn−kL · pkH . (V.4)
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Figure V.1: Additional Examples – Volume-Based Capital Requirements
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Note: This figure complements the illustrations shown in Figure 1 on the relation between the pool size and policyholder’s
expected utility under volume-based capital requirements. We show the certainty equivalent (CEQ) of buying the vulnerable
contract (black line) as a function of the pool size n as well as the value of the corresponding safe contract (gray line). We
present three additional examples with independent and identically distributed risks. For the illustration in Panel A, we rely on
a Student t distribution with µ = 2, σ = 4/

√
2 and ν = 4. The example shown in Panel B assumes that Xi follows the skewed

t distribution proposed by Hansen (1994) with µ = 2, σ = 4, ν = 4 and λ = 0.75. For Panel C, we assume a t distribution
with the same parameters as in Panel A but we truncate the distribution at −20 and +20. In the Panels A and B, we rely on
mean-variance preferences according to equation (25) with γi = 1. The illustration in Panel C uses the certainty equivalent of
a decision maker with power utility preferences according to equation (V.1) with ηi = 5.
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Figure V.2: Additional Examples – VaR-Based Capital Requirements
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Note: This figure complements the illustrations shown in Figure 2 on the relation between the pool size and policyholder’s
expected utility under VaR-based capital requirements. We show the certainty equivalent (CEQ) of buying the vulnerable
contract (black line) as a function of the pool size n as well as the value of the corresponding safe contract (gray line). The
additional examples rely on the same distributional assumptions and preference specifications as the corresponding illustrations
in Figure V.1. We choose α = 0.05 for the VaRα.
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Assuming an exponential utility function with the risk aversion parameter γi, we obtain

E[ui(Wi,n)] = 1−
n∑
k=0

P
[
S̄n = h k

n

]
exp

(
−γi

(
w0,i − π −max

{
h k

n
−VaRα

[
S̄n
]

; 0
}))

(V.5)

for the expected utility from a buying a vulnerable insurance contract from a company with a total

risk pool of size n. To determine the VaRα of S̄n, we simply use the general VaR definition for the

probability distribution given in equation (V.4). The corresponding AVaRα can be computed as

follows

AVaRα

[
S̄n
]

= 1
α

{
E
[
S̄n1

(
S̄n > VaRα

[
S̄n
])]

+ VaRα

[
S̄n
] (

α− P
[
S̄n > VaRα

[
S̄n
]])}

. (V.6)

In this case, the relationship between the pool size and the expected utility depends on the distri-

bution parameters. We illustrate the expected utility and the excess tail risk as a function of n for

h = 8, pL = 3
4 (and thus pH = 1

4), π = 2, w0,i = 10, γi = 0.5 and α = 5% in Figure V.3. With these

parameters, the results are qualitatively similar to the setting with independent mixtures of normals

that we discussed as Example 3 iii). Note, however, that the change in the policyholders’ utility

level is partly associated with a varying default probability, which is caused by the discreteness of

the loss distribution.
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Figure V.3: Additional Example – Binomial Distribution
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Note: This figure illustrates the case of VaR-based capital requirements under the assumption of independent and identically
distributed losses with P[Xi = 0] = 0.75 and P[Xi = 8] = 0.25. Furthermore, we assume an exponential utility function with
γi = 0.5 and suppose that w0,i = 10, π = 2 and α = 0.05. Panel A depicts the certainty equivalents (CEQ) of buying the
safe insurance contract (gray line) and the vulnerable insurance contract (black line) as a function of the pool size n. Panel B
presents the excess tail risk AVaRα

[
S̄n
]
−VaRα

[
S̄n
]

as a function of n.
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