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B Tail Risk Hedging for Simple Elliptical Distributions

In this appendix, we analyze the case of simple elliptical distributions, which we criticized

in the introduction and then briefly summarized at the end of Section 3.1. In particular, we

discuss conditions under which minimum-variance hedging will be a good approximation

to tail-risk-minimal hedging or will even be equivalent. Therefore, we review the results of

Theorem 1 for K = 1. This corresponds to

RS

RF

 ∼ EN+M(

µS
µF

 ,

 ΣS ΣFS

Σ′SF ΣF

 , g) (B.1)

and for VaRα and CVaRα as a function of the hedging weights it implies that

vα(h) = µL(h) + σL(h) z1−α(g) and cα(h) = µL(h) + σL(h) λ1−α(g), (B.2)

where µL(h) = −w′ · µS + h′ · µF and σL(h) = w′ ·ΣS ·w − 2 w′ ·ΣSF · h+ h′ ·ΣF · h.

The generator specific constants z1−α and λ1−α can be derived from the distribution of

Z ∼ E1(0, 1, g) as (1− α)-quantile z1−α(g) = q1−α[Z] and a corresponding tail conditional

expectation λ1−α(g1) = E[Z | Z ≥ z1−α(g)]. Note that in contrast to zk(h) and λk(h) in

the mixture case, z1−α(g) and λ1−α(g) do not depend on the hedging strategy but only on

the generator of the distribution and the chosen confidence level 1− α.1 Furthermore, we

1 For a normal or standardized t-distribution, the expressions provided in Section 3.2 can be used here.
See Landsman and Valdez (2003) for a comprehensive discussion of elliptical risk models and the
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obtain the following simplified FOCs from Theorem 1.2

Corollary 1 Under (R1) and (M1) with K = 1 the VaRα-minimal hedge vector h∗VaR and

the CVaRα-minimal hedge vector h∗CVaR solve

µF +
ΣFL(h∗VaR)

σL(h∗VaR)
z1−α(g) = 0M and µF +

ΣFL(h∗CVaR)

σL(h∗CVaR)
λ1−α(g) = 0M , (B.3)

where ΣFL(h) = −Σ′SF ·w + ΣF · h.

In this setting, not only CVaRα- but also VaRα-minimal hedging is a convex optimization

problem for α < 0.5.3 Moreover, by subtracting µF in (B.3) and solving for h∗MVaR and

h∗MCVaR, it follows that

h∗MVaR = h∗MCVaR = h∗var = Σ−1
F ·Σ

′
SF ·w. (B.4)

Thus, in this case, minimum-variance and tail-risk-minimal hedging policies coincide, which

is similar to the equivalence between variance and VaRα-based portfolio optimization prob-

lems if the mean is fixed (Embrechts et al., 2002, Theorem 1).4 Obviously, the same applies

to VaRα- and CVaRα-minimal hedging policies if µF = 0M . Summing up, using elliptical

distributions, differences between minimum-variance and tail-risk-minimal hedges are only

due to the contributions of the hedging positions to the expected portfolio return.

To improve our understanding of the case µF 6= 0M , we finally analyze N = M = K = 1,

which corresponds to an 1:1 hedging problem under the assumption of an ordinary elliptical

derivation of the relevant constants in general.
2 Another important distinction to the mixture case is that these results could also be derived by

immediately differentiating the risk measures in (B.2) with respect to h.
3 This follows from the convexity/subadditivity of VaRα for elliptical distributions (Embrechts et al.,

2002, Theorem 1).
4 This result can also be seen from the form of the risk measures in (B.2) because from those we obtain

MVaRα[LH(h)] = σL(h) z1−α(g) and MCVaRα[LH(h)] = σL(h) λ1−α(g).
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distribution for the spot and the futures return.5 The resulting simplified version of (M1)

can be written as RS

RF

 ∼ E2(

µS
µF

 ,

 σ2
S ρσSσF

ρσSσF σ2
F

 , g). (B.5)

Under the additional restrictions

|z1−α| σF > |µF | or |λ1−α| σF > |µF |, (B.6)

we can solve (B.3) for the hedging weights, which are 6

h∗VaR =
σS
σF

(
ρ− µF

√
1− ρ2

z2
1−α(g)σ2

F − µ2
F

)
, (B.7)

h∗CVaR =
σS
σF

(
ρ− µF

√
1− ρ2

λ2
1−α(g)σ2

F − µ2
F

)
. (B.8)

(B.7) was proved by Hung et al. (2006) for the Gaussian case and generalized in Albrecht

(2011) for elliptical distributions. These expressions allow for an instructive analytic com-

parison of minimum-variance and tail-risk-minimal hedging, which complements the discus-

sion in Alexander and Baptista (2002, 2004) on VaRα- and CVaRα-based portfolio selection

problems.

We see again the correspondence of variance and quantile-based hedging for µF = 0. In

this case, the conditions for the existence of a tail-risk-minimizing strategy will always be

satisfied. In general, theses conditions define a lower and upper limit for the expected

futures returns. If the absolute value of the expected return of the futures contract is

higher than the standard deviation scaled by |z1−α| or |λ1−α|, VaRα and CVaRα can be

made arbitrarily small (negative) by increasing or decreasing h. Note that usually (B.6)
5 The assumption N = 1 is not crucial here. For any given multivariate RS and the corresponding

weight vector w, we can deduce the distribution of w′ ·RS and its correlation with RF .
6 Note that the calculations involve solving a quadratic equation. Nevertheless, the hedge ratios are

unique because only one solution of the quadratic equation solves the original problems in (B.3).
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will be satisfied because for small values of α, z1−α and λ1−α are greater than one and at

typical investment or hedging horizons, the magnitude of σF dominates that of µF .

The differences between variance and tail-risk-minimal hedging strategies follow simply

from (B.7) and (B.8). In the case of VaRα, e.g., we obtain

h∗VaR − h∗var = −µF

√
1− ρ2

z2
1−ασ

2
F − µ2

F

, (B.9)

which leads to the following observations: (i) The variation increases in the absolute level of

the mean of the futures return. If the mean of the hedging instrument is positive, the hedg-

ing amount is reduced compared to the minimum-variance position. This can be attributed

to a positive contribution of the futures position to the expected loss of the hedged port-

folio. (ii) Both the variance of the futures return and an increasing confidence level lower

the difference. (iii) For the same confidence level, the difference between minimum VaRα

and minimum-variance hedging is greater than the difference between minimum CVaRα

and minimum-variance hedging. (iv) Eventually, we see that the difference is only relevant

if there is some basis risk because it decreases in the level of correlation.7 For a typical

parameter constellation such as µF = 0.01, σF = 0.05, σS = 0.05, ρ = 0.90, α = 0.01, and

assuming joint normality of the returns, we obtain h∗var = 0.90 and h∗VaR = 0.86, so that

the minimum-variance approach can be seen as a good approximation to tail-risk-minimal

hedging.

We now provide closed form expressions for the attainable reductions on the level of VaRα

and CVaRα derived from (B.2). We first calculate the VaRα for the optimal strategy using

7 The first three effects (i) - (iii) are not surprising given (B.2), which shows that minimizing VaRα and
CVaRα under elliptical distributions corresponds to a mean-standard deviation optimization, where
the trade-off between these two objectives is described by the quantile risk constants z1−α and λ1−α.
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h∗VaRα
from (B.7). Note that

µL(h∗VaR) = −µS + µF
σS
σF

ρ− µ2
F

σS
σF

√
1− ρ2

z2σ2
F − µ2

F

, (B.10)

σL(h∗VaRα) = σS · σF · z ·

√
1− ρ2

z2σ2
F − µ2

F

(B.11)

and thus

VaRα(h∗VaR) =− µS + µF · ρ ·
σS
σF

+
σS
σF

√
1− ρ2

√
z2σ2

F − µ2
F . (B.12)

Using the minimum-variance strategy, we obtain

µL(h∗var) = −µS + ρ · σS
σF
· µF , (B.13)

σ2
L(h∗var) = σ2

S(1− ρ2). (B.14)

The corresponding VaRα is

VaRα(h∗var) = −µS + µF · ρ ·
σS
σF

+ z1−α(g) · σS ·
√

1− ρ2. (B.15)

In the given example with µS = 0.01, we obtain VaRα(h∗VaR) = 0.0495 and VaRα(h∗var) =

0.0497, showing that also on the level of the risk measures, the magnitude of reductions is

very small. In general, it holds that

VaRα(h∗var)− VaRα(h∗VaR) = σS
√

1− ρ2

[
z1−α(g)−

√
z2

1−α(g)− µ2
F

σ2
F

]
. (B.16)
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The same reasoning can be used for CVaRα-minimal hedging, which yields

CVaRα(h∗var)− CVaRα(h∗CVaR) = σS
√

1− ρ2

[
λ1−α(g)−

√
λ2

1−α(g)− µ2
F

σ2
F

]
. (B.17)

Applying
∣∣∣√a−√b∣∣∣ ≤ √|a− b| to (B.16), we obtain the following upper bound for the

VaRα reduction

VaRα(h∗var)− VaRα(h∗VaR) ≤ |µF |
σS
σF

√
1− ρ2, (B.18)

which confirms the importance of |µF | and ρ for the relevance of tail-risk-minimal hedging

in the elliptical case. Since this reasoning is independent of the involved (risk) constants,

the same bound holds for CVaRα hedging.

C Further Empirical Results

In this section, we provide further empirical results for our in-sample and out-of-sample

analyses and especially for the robustness checks. In addition to estimation results, we

show hedging results based on simple elliptical distributions and provide plots of smoothed

probabilities for our RS models. Complementing Figure 3 in the main text, we provide

exceedance correlations and lower tail dependence functions for (P1).
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Figure C.1: Smoothed Probabilities for the Three-State RS Models Presented in Table 3
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Figure C.2: Exceedance Correlations and Lower Tail Dependence Functions for the Returns of
(P1) and the S&P futures
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Table C.1: Parameter Estimates, Simple Elliptical Distributions

(P1) (P2)

par s.e. par s.e.

Multivariate normal distribution
µS 0.80 (0.15) 0.81 (0.17)
µF 0.50 (0.23) 0.50 (0.23)
σS 2.98 (0.11) 3.26 (0.12)
σF 4.42 (0.16) 4.42 (0.16)
ρSF 86.52 (1.30) 81.40 (1.74)

Multivariate standardized t-distribution
ν 4.48 (0.78) 4.08 (0.64)
µS 1.08 (0.13) 1.14 (0.13)
µF 0.90 (0.20) 0.88 (0.19)
σS 2.94 (0.18) 3.07 (0.21)
σF 4.44 (0.28) 4.53 (0.31)
ρSF 85.41 (1.61) 79.74 (2.15)

In-sample parameter estimates for bivariate normal and standardized t-distributions.
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Table C.2: Parameter Estimates, EM Algorithm

Panel A: RS K = 2 (P1) (P2)

par s.e. par s.e.

State 1
µS,1 -0.57 (0.83) -2.60 (1.54)
µF,1 -1.61 (1.15) -4.18 (1.71)
σS,1 4.89 (0.58) 6.59 (1.63)
σF,1 6.96 (0.67) 7.42 (1.19)
ρSF,1 87.29 (2.64) 83.10 (4.25)

State 2
µS,2 1.18 (0.14) 1.25 (0.17)
µF,2 1.08 (0.20) 1.1 (0.26)
σS,2 2.03 (0.12) 2.17 (0.16)
σF,2 3.17 (0.17) 3.43 (0.25)
ρSF,2 83.52 (2.18) 76.33 (2.60)

Transition matrix
q11 83.3 (7.4) 63.3 (11.6)
q21 4.6 (1.7) 4.7 (2.3)

Starting probabilities
π1 0.00 - 0.00 -
π2 100.00 - 100.00 -

Panel B: RS K = 3 (P1) (P2)

par s.e. par s.e.

State 1
µS,1 -3.70 (6.66) -4.00 (2.55)
µF,1 -6.17 (10.66) -6.12 (2.61)
σS,1 4.85 (1.36) 7.85 (2.02)
σF,1 6.29 (4.42) 8.11 (1.55)
ρSF,1 82.69 (24.59) 82.25 (5.75)

State 2
µS,2 1.46 (0.34) 1.14 (0.17)
µF,2 1.36 (0.44) 1.01 (0.30)
σS,2 2.48 (0.49) 2.08 (0.20)
σF,2 4.01 (0.50) 3.73 (0.30)
ρSF,2 81.13 (3.28) 74.00 (4.41)

State 3
µS,3 0.97 (0.21) 1.05 (0.36)
µF,3 0.93 (0.30) 0.69 (0.48)
σS,3 1.79 (0.15) 3.13 (0.31)
σF,3 2.52 (0.24) 3.57 (0.38)
ρSF,3 88.32 (2.24) 92.09 (2.19)

Transition matrix
q11 62.1 (34.7) 61.3 (14.0)
q12 37.9 (72.0) 27.6 (24.1)
q21 4.7 (4.9) 2.9 (1.7)
q22 92.8 (3.1) 97.1 (13.7)
q31 2.8 (2.6) 1.4 (2.3)
q32 0.5 (1.0) 1.1 (4.9)

Starting probabilities
π1 0.00 - 0.00 -
π2 100.00 - 100.00 -
π3 0.00 - 0.00 -

In-sample parameter estimates for the bivariate RS models with two and three normal components obtained with the uncon-
strained EM algorithm (Hamilton, 1990).
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Table C.3: Parameter Estimates, Monte-Carlo Simulations

skewed-t margins Copula parameters

mean std νst λst ν ρ

S1 0.81 3.26 3.46 -0.22 6.08 80.68
F1 0.50 4.42 5.69 -0.22

This table contains parameter estimates of the copula model used in our Monte-Carlo experiment. The parameters of the
skewed-t distribution are obtained from MLE. The copula parameters are obtained after transforming the data with their
marginal empirical distribution functions.

Table C.4: Parameter Estimates, Composite Hedging

Panel A: bivariate model par s.e. par s.e.

State 1 State 2
µS,1 -10.34 (2.37) µS,2 0.78 (0.40)
µF,1 -8.88 (1.99) µF,2 -0.20 (0.90)
σS,1 5.59 (1.87) σS,2 3.33 (0.38)
σF,1 4.56 (1.48) σF,2 5.92 (0.75)
ρSF,1 99.35 (0.55) ρSF,2 67.69 (5.96)

State 3 Transition matrix
µS,3 1.07 (0.16) q11 29.2 (18.0)
µF,3 1.13 (0.23) q21 2.6 (1.9)
σS,3 1.98 (0.13) q31 0.8 (0.9)
σF,3 2.92 (0.20) q12 54.3 (25.7)
ρSF,3 52.20 (5.99) q22 88.7 (7.3)

q32 3.8 (2.1)
Stationary distribution
π1 1.9
π2 31.6
π3 66.5

Panel B: trivariate model par s.e. par s.e.

State 1 State 2
µS,1 -5.45 (6.36) µS,2 0.90 (2.22)
µF1,1 -3.74 (5.79) µF1,2 -0.11 (3.02)
µF2,1 -22.42 (6.39) µF2,2 2.89 (2.62)
σS,1 7.28 (2.31) σS,2 3.34 (1.41)
σF1,1 7.01 (2.08) σF1,2 6.50 (1.74)
σF2,1 12.41 (2.20) σF2,2 13.57 (2.19)
ρ1[S, F1] 99.07 (0.54) ρ2[S, F1] 69.97 (15.30)
ρ1[S, F2] 3.13 (22.82) ρ2[S, F2] 47.87 (36.94)
ρ1[F1, F2] -7.47 (22.67) ρ2[F1, F2] 3.12 (70.73)

State 3 Transition matrix
µS,3 0.99 (0.48) q11 50.2 (15.5)
µF1,3 0.87 (0.59) q12 36.6 (81.6)
µF2,3 1.02 (0.67) q21 0.0 (48.4)
σS,3 2.21 (0.25) q22 83.3 (42.3)
σF1,3 3.25 (0.35) q31 2.2 (6.0)
σF2,3 7.24 (1.37) q32 3.0 (4.7)
ρ3[S, F1] 55.87 (5.00)
ρ3[S, F2] 62.40 (6.43)
ρ3[F1, F2] -4.83 (11.35)

Stationary distribution
π1 3.4
π2 21.1
π3 75.5

Panel A contains in-sample parameter estimates for a bivariate RS model with three normal components fitted to the joint
distribution of (P3) and S&P futures returns. Panel B contains estimation results for a trivariate RS model with three normal
components fitted to the the joint distribution of (P3), S&P futures and oil futures returns. Robust standard errors are
reported.
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Table C.5: Parameter Estimates, RST3

(P1) (P2)

par s.e. par s.e.

ν 244.7 (26.5) 6.3 (1.4)

State 1
µS,1 -3.76 (5.22) 0.53 (0.66)
µF,1 -6.27 (8.35) 0.26 (0.74)
σS,1 4.84 (1.18) 5.33 (0.75)
σF,1 6.24 (3.55) 5.72 (0.63)
ρSF,1 82.53 (20.16) 93.74 (1.46)

State 2
µS,2 1.46 (0.33) 1.43 (0.18)
µF,2 1.37 (0.44) 1.23 (0.22)
σS,2 2.49 (0.41) 2.00 (0.16)
σF,2 4.02 (0.42) 2.47 (0.18)
ρSF,2 81.03 (3.31) 69.17 (5.35)

State 3
µS,3 0.98 (0.20) 0.90 (0.18)
µF,3 0.93 (0.30) 0.60 (0.33)
σS,3 1.80 (0.15) 2.67 (0.20)
σF,3 2.54 (0.26) 4.94 (0.32)
ρSF,3 88.36 (2.22) 79.32 (3.00)

Transition matrix
q11 61.4 (30.9) 97.4 (9.3)
q12 38.5 (59.7) 2.1 (2.1)
q21 4.6 (4.2) 0.9 (0.7)
q22 92.8 (3.0) 97.8 (1.4)
q31 2.8 (2.6) 0.0 (0.7)
q32 0.8 (1.3) 1.0 (0.5)

Stationary distribution
π1 9.2 - 12.7 -
π2 53.2 - 35.0 -
π3 37.6 - 52.3 -

In-sample parameter estimates for bivariate RS models with three t-distributed components fitted to the bivariate distribution
of (P1) and (P2) and the S&P futures returns. Robust standard errors are reported.
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