DE / EN

Master-Seminar

IS 712 für Master Studierende (MMM und Wirtschafts­informatik) / IS 918 (MMBR)

Allgemeines

FSS 2026
Durchführender Dozent Désirée Zercher
Prüfer Prof. Dr. Armin Heinzl
Veranstaltungs­art Seminar
Leistungs­punkte 6 ECTS (MMM), 4 ECTS (WI ab HWS 2013)
Sprache Englisch
Prüfungs­form und -umfang Seminararbeit (70%), Präsentation (20%), Diskussionsbeitrag (10%)
Prüfungs­termin Siehe Infos zur Veranstaltung
Infos für Studierende Registrierung: Bitte beachten Sie unten stehende Informationen!
Dr. Désirée Zercher

Dr. Désirée Zercher

Ansprech­partner Master-Seminar

Bei Fragen wenden Sie sich bitte an Désirée Zercher.

Infos zur Veranstaltung

New Frontiers in Digital Trans­formation

  • Kurzbeschreibung

    Digitale Technologien und die ständig wachsende Datenmenge verändern unser tägliches Leben und die Wirtschaft radikal. Digitale Technologien, die in den Kern der Produkte, Abläufe und Strategien vieler Unter­nehmen eingebettet sind, führen in allen Branchen zu einer raschen Umgestaltung bestehender Unter­nehmen. Rund um die Nutzung dieser digitalen Technologien entstehen neue Markt­angebote, Geschäfts­prozesse und Geschäfts­modelle, die zu digitalen Innovationen führen1. Die Allgegenwärtigkeit digitaler Technologien verändert unser Verständnis von Informations­systemen (IS) grundlegend, insbesondere im Hinblick auf ihre Entwicklung, Koordination, Nutzung und die Art und Weise, wie wir mit ihnen interagieren. An unserem Lehr­stuhl bieten wir ein breites Spektrum an Forschungs­themen im Bereich der Informations­systeme an, wobei wir uns auf neue digitale Technologien wie künstliche Intelligenz (KI) und maschinelles Lernen (ML) konzentrieren. In unserer Forschung nehmen wir die Perspektiven der Mensch-Computer-Interaktion, des Systemdesigns, der Wertschöpfung oder der Organisation ein.

    In unserem Seminar werden wir die Gestaltung digitaler Technologien sowie deren Aus­wirkungen auf Individuen und Organisationen unter­suchen. Dabei verknüpfen wir die angebotenen Themen mit unserer laufenden Forschung, die in führenden internationalen Zeitschriften veröffentlicht wurde und wird.

    1. Nambisan, S., Lyytinen, K. & Yoo, Y. Handbook of Digital Innovation. 2–12 (2020) doi:10.4337/9781788119986.00008. 

    Möchten Sie mehr über digitale Innovation erfahren? Werfen Sie einen Blick auf unseren Master­kurs IS 607 (https://www.bwl.uni-mannheim.de/en/heinzl/teaching/digital-innovation/) und/oder sehen Sie Nambisan, S., Lyytinen, K. & Yoo, Y. Handbook of Digital Innovation, (2020), doi:10.4337/9781788119986. 

    Ziel des Seminars

    In diesem Seminar erwerben Sie die Fähigkeit, vorhandene Forschung zu identifizieren, einzuordnen und zu bewerten. Sie lernen, ein eigenes Forschungs­programm zu entwickeln sowie dieses zu präsentieren und mit den Seminarteilnehmern zu diskutieren. Sie werden in verschiedenen Techniken des wissenschaft­lichen Arbeitens und Schreibens unter­richtet, so dass Sie optimal auf die Konzeption und das Verfassen Ihrer Master­arbeit vorbereitet werden. Wir bieten verschiedene Themen­bereiche an, die hoffentlich Ihr Interesse wecken. 

FSS 2026

  • Registrierung

    Die Registrierung erfolgt ausschließlich über das Online-Registrierungs­portal (erreichbar innerhalb des Uni-Netzwerkes oder über VPN). Während des Registrierungs­zeitraums können Sie das Seminar im Anmeldeformular auswählen.

    Registrierungs­zeitraum: siehe Termine  

    Anforderungen:

    • Kurzes formloses Motivations­schreiben (maximal 1 Seite):

    Bitte wählen Sie ein Thema und begründen Sie Ihre Wahl, z. B. was Sie besonders interessiert und was Sie lernen möchten. Bitte geben Sie auch zwei alternative Themen an.

    • Lebens­lauf und Studien­ergebnisse (Notentrans­kript)

    Es werden weder Registrierungen per E-Mail noch unvollständige Formulare im Registrierungs­tool berücksichtigt.

  • Themen

    Die Studierenden werden gebeten, ein  formloses Motivations­schreiben (maximal 1 Seite) zu verfassen, in dem Sie dieThemenauswahl darlegen und kurz begründen.Dieses Motivations­schreiben stellt neben dem Lebens­lauf und dem Notentrans­kript eine wichtige Referenz für die Seminarzulassung dar.


    ThemengebietBeschreibungBetreuer
    AI Avatars This seminar thesis investigates the emotional responses of human participants during interactions with AI-generated avatars of varying sizes. The study aims to examine how differences in avatar scale influence users’ emotional reactions and overall interaction experience. Emotional responses will be systematically evaluated using specialized emotion-tracking software, allowing for an objective and data-driven analysis of affective states. By combining principles from human–computer interaction and affective computing, this research seeks to contribute to a deeper understanding of how avatar design parameters impact user emotions in AI-mediated environments. Keywords: Human–Computer Interaction (HCI), AI Avatars, Emotion Tracking Bastian Schieck
    Mobile Health Applications Mobile health applications (mHealth), especially mental health apps, aim to help individuals improve their emotion regulation (ER) behavior. Research shows that ER supports wellbeing when strategies are used flexibly and in accordance to contextual demands. Due to their specific features and interactive nature, mHealth apps promise to uniquely support such flexible ER. However, it is still unclear whether and how current mHealth apps actually support such flexible emotion regulation in everyday use. For this seminar thesis, students will work with a large dataset of user traces consisting of time-stamped feature-use sequences that reflect and shape users’ evolving ER behavior over time. The task is to analyze and interpret these sequences based on ER theory and theoretical models of ER flexibility. Through qualitative coding and comparison of multiple use trajectories, students will identify and visualize different patterns of ER behavior and assess whether they speak to the theoretical concepts of ER flexibility. The expected outcome is a clearer understanding of how specific app features and design choices can support the development of flexible ER behavior. Good starting points on the topic are: · Pieper, M., Rehse, J. R., & Fallon, M. (2024). Digitally Supported Emotion Regulation: A Conceptualization Based on Trace Data Analysis of mHealth Use. ICIS 2024 Proceedings, 8, 1377. https://aisel.aisnet.org/icis2024/ishealthcare/ishealthcare/8 · Aldao, A., Sheppes, G., & Gross, J. J. (2015). Emotion Regulation Flexibility. Cognitive Therapy and Research, 39(3), 263–278. https://doi.org/10.1007/s10608-014-9662-4 · Bonanno, G. A., & Burton, C. L. (2013). Regulatory Flexibility: An Individual Differences Perspective on Coping and Emotion Regulation. Perspectives on Psychological Science, 8(6), 591–612. https://doi.org/10.1177/1745691613504116 Mechthild Pieper
    Digital Platform Regulations Digital platforms have become enormously successful, drawing increasing attention from regulators worldwide. Europe has long been at the forefront of data protection, and more recently, regulatory efforts have increasingly targeted digital platforms. With the introduction of the Digital Markets Act (DMA) and the Digital Services Act (DSA), the EU has implemented strong initiatives aimed at shaping competition, platform governance and access to digital markets. More recently, emerging regulations such as the EU AI Act impose significant requirements on AI-based platforms and data-driven business models. The benefits of this growing body of regulation initiatives, such as fairness, trans­parency or user protection, notwithstanding, they may also contribute to fragmentation of platform business models, for example through regional product variation, restricted access, or differentiated architectural choices. In a seminar thesis within this topic area, students are expected to systematically discuss selected regulatory initiatives and to develop a study design to examine their impact on digital platform business models. André Halckenhäuser
    Healthcare innovation, oncology patient journey Background: At the research campus M2OLIE at the University Hospital Mannheim we are developing a digital and MedTech innovation that makes diagnosis and treatment of people with cancer possible within one day. This highly ambitious and potentially life-saving goal requires, in order to be successfully adopted, a strong integration of the patient’s perspective on how such care is best received. Abstract: For this purpose, the seminar paper aims to examine the end-to-end oncology patient journey, ideally with a focus on Germany or Europe, from initial suspicion through diagnosis, therapy, and follow-up. Using a process-oriented Information Systems perspective, the paper describes the key actors involved (e.g., physicians, radiologists, hospitals, laboratories), as well as the associated information flows and handovers. Particular attention should be given to the perspectives of patients and their pain points, including coordination failures, media breaks, delays, and information asymmetries. The analysis draws on medical workflow literature, health information systems research, policy sources, and patient reports, to identify central elements of high importance to patients and potential areas for improvement. This topic not only allows students to contribute to a project of high societal relevance but can also serve as a strong foundation for an engaging and highly relevant master’s thesis. Michael Sternberg
    Healthcare innovation, go-to-market strategy, delivery model At M2OLIE (for explanation see “background” above) we need a suitable delivery model to be able to bring our innovation to the market and, consequently, treat people in need. Accordingly, this paper provides a structured overview of delivery models in oncology care by conceptualizing them as a multidimensional design space rather than as discrete alternatives. Building on Information Systems and healthcare service literature, the paper identifies key delivery dimensions and analyzes how regulatory, organizational, technical, and economic constraints influence the feasibility, suitability, and scalability of different delivery configurations. Based on this analysis, the paper develops a contingency-based logic to support the informed selection or combination of delivery models. The aim is to enable the selection of an appropriate delivery model based on the parameters identified in your seminar work. Upon successful completion, you will have the opportunity to further develop and design a delivery model that can make a substantial contribution to our business model and business plan. Michael Sternberg
    Human-AI creativity; human-AI collaboration. human-AI innovation. In this seminar thesis, you will conduct a qualitative analysis of approximately 100 human-AI image generation sessions. Our trace data includes all prompts, generated images, as well as some quanti­tative measures. The student will review relevant literature in the field of creativity, cognitive psychology, and collaboration literature to identify a suitable theory to apply in analyzing the data. Successful completion will include understanding mechanisms that increase emergence, i.e., the space of possible action, in human-AI collaboration. Mechthild Pieper & Deborah Mateja
    Avatars in Virtual Try-On: Self- versus Other Avatars How do consumers perceive themselves when represented through avatars, and how does this shape their evaluation of products? This seminar thesis explores the impact of avatar design in virtual try-on (VTO) environments, focusing on the interplay between realism, beautification, and perspective (self vs. other). Based on a fully prepared dataset from an experimental study, the thesis investigates how two combinations of avatar design characteristics influence emotional (e.g., eeriness, affinity, attractiveness) and cognitive (e.g., perceived helpfulness) responses. The study builds on current literature streams in the Uncanny Valley, self-representation, and digital fashion, and opens the door to exploring how photorealistic identity shape user experience and product evaluation. The student will work with structured questionnaire data from a mixed factorial experimental design and develop their own analytical approach (mostly quanti­tative, but qualitative, or mixed also welcome) to uncover key patterns in the data and link them to relevant theories from marketing, psychology, and information systems. Applicants should be interested in user perception, digital environments, and empirical research. Some familiarity with statistics, experimental logic, or data tools (e.g., SPSS, R, Excel) could beneficial but is not required and can be developed with the supervisor. Rosa Holtzwart
    AI-native social media This seminar thesis will focus on the dark side of AI-native social media platforms (e.g., Sora 2) and explore how AI-supported content and identity creation shape users’ experiences and behavior. The student’s core task is to develop a theoretically grounded empirical research design (preferably a quanti­tative or qualitative experiment) that investigates a research question specific to this context, for example related to the Proteus Effect, self-objectification, or malicious manipulation of self-presentation with AI. The thesis should (1) identify a gap in extant literature, (2) motivate and define a clear research question, (3) derive hypotheses from an appropriate theoretical framework, (4) propose a concrete study design including measures and manipulations, and (5) if feasible, conduct a small pretest of the design to assess clarity and plausibility or to evaluate potential stimuli/ manipulation. Rosa Holtzwart & Deborah Mateja
    Graph Neural Networks, Patient Similarity, Explainable AI Providing similar examples with comparable or contrasting outcomes represents a promising strategy for explaining healthcare AI decisions. However, finding similar patients is inherently difficult due to challenges in defining meaningful similarity and black-box model behavior. Graph Neural Networks can be utilized to learn patient relations­hips and extract meaningful similarity representations for generating interpretable example-based explanations. This thesis should review how GNNs are applied for patient similarity computation and example-based explanations in healthcare AI. Students should implement a small prototype demonstrating GNN-based patient similarity for explanation generation or conduct/plan an experiment based on an existing solution. Basic coding skills are advantageous. Florian Rüffer
    Hospital platform eco­systems, AI platforms Digital platform eco­systems are increasingly discussed as a means to improve coordination, innovation, and value creation in healthcare systems. In particular, hospitals are expected to play a central role in platform-based arrangements that integrate digital technologies and AI-driven applications to support clinical and operational processes. At the same time, healthcare is characterized by strong regulatory constraints, professional autonomy, and complex organizational structures that challenge the trans­ferability and scalability of AI-enabled platform models from other industries. In this seminar thesis, students are expected to systematically review digital platform eco­systems in healthcare and to critically assess the role of digital technologies and artificial intelligence in the design and governance of hospital-centered platform eco­systems. Michael Sternberg
    EU-AI Act The European Union is at the forefront of regulating artificial intelligence systems globally, positioning itself as a pioneer in establishing a comprehensive governance framework for AI, with the risk-based regulation of AI systems being a central rationale for this effort. The EU AI Act is the world’s first comprehensive legal framework governing the development, deployment, and use of AI systems based on their potential risks to safety, fundamental rights, and society. Adopted in 2024, the Act will be implemented in a phased manner, with different obligations becoming applicable between 2025 and 2027 depending on the risk classification and type of AI system. This staggered implementation timeline creates substantial challenges for organizations, which must ensure compliance at specific points in time while often facing uncertainty about how abstract regulatory requirements can be trans­lated into concrete technical and organizational measures. In particular, many open questions remain regarding how compliance obligations can be operationalized in practice, taking into account AI system characteristics, risk categories, application domains, and organizational contexts. Against this background, the seminar thesis aims to provide a structured overview of the EU AI Act, examine how organizations have approached its implementation so far, and develop a practice-oriented guideline that follows a science-for-practice approach and supports organizations in implementing safe, human-centric AI systems in alignment with the EU AI Act. (Reference) Désirée Zercher, (André Halckenhäußer)
    Designing Patient-Centered Success Measurement in Psycho-Oncological Care Patients diagnosed with cancer frequently experience psychological distress such as fear, stress, and anxiety, while clinical staff often lack sufficient time to comprehensively address psycho-oncological needs within everyday care. Although digital patient applications can support patients during their treatment journey, they are rarely used to systematically evaluate psycho-oncological processes and outcomes from the patient’s perspective in clinical settings. M2OLIE provides a digital health framework that connects patient-facing technologies with clinical processes and data infrastructures, enabling new forms of process trans­parency and evaluation. Building on this context, this seminar explores how digital patient applications can be used to measure, evaluate, and improve psycho-oncological care from a patient-centered perspective. Students will work on the design of a conceptual evaluation framework and/or an implementation concept that defines (1) relevant patient-centered success metrics (e.g., psychological burden, perceived support, satisfaction), (2) methods for capturing these metrics using a digital patient application, and (3) ways to relate them to clinical processes. The seminar emphasizes conceptual rigor, practical relevance, and feasibility under regulatory and data protection constraints. Florian Rüffer
  • Kursüberblick und -termine

    EventZeitraum / DeadlineArbeits­ergebnisse
    Registrierungs­zeitraum 02.02. – 05.02.2026 Registrierung über das Online-Tool – Fügen Sie Ihren Lebens­lauf, das Notentrans­kript und Ihr Motivations¬schreiben an
    Versand der Bestätigungen 12.02.2026  
    Deadline zum Rücktritt 13.02.2026  
    Kick-Off Meeting 17.02.2026
    14:00 Uhr
    L15, 1–6, Raum A001 (EG)
    Teilnahme an der Kick-Off-Einführungs­veranstaltung
    Kontakt und Treffen mit Ihrem Betreuer
    1. Meilenstein 03.03.2026 Ersten Entwurf bei Ihrem Betreuer einreichen: – Detaillierte Gliederung – Literatur­verzeichnis
    2. Meilenstein 14.04.2026 Zweiten Entwurf bei Ihrem Betreuer einreichen: – Inhaltsverzeichnis – Einführung: vollständig formuliert – Methodik: vollständig formuliert – Ergebnisse: strukturierter Entwurf – Diskussion: strukturierter Entwurf
    Abgabe der Arbeit 28.04.2026 (mittags) Die Seminararbeit ist am Abgabetag in digitaler und gedruckter Form einzureichen. Senden Sie die PDF-Version bis spätestens 12:00 Uhr per E-Mail an Désirée Zercher (zercher@uni-mannheim.de) und setzen Sie dabei das Sekretariat des Lehr­stuhls (wifo1@uni-mannheim.de) sowie Ihren *Betreuerin* in CC. Zusätzlich sind am selben Tag zwei gedruckte Exemplare beim Sekretariat abzugeben. Die Abgabe gilt nur dann als vollständig, wenn alle drei Schritte frist­gerecht erfolgt sind.
    Abgabe der Präsentation 07.05.2026 (mittags) Optional: Bitten Sie Ihren Betreuer vorab um Feedback zur Präsentation – Senden Sie Ihre Präsentation im PDF-Format per E-Mail an Désirée Zercher
    Präsentation 12.05 / 13.05.2026 Besuchen Sie das Seminar und beteiligen Sie sich aktiv an der Diskussion am Seminartag – Präsentieren und diskutieren Sie Ihre Seminararbeit im gemeinsamen Workshop – Diskussion und Feedback für mindestens eine Seminararbeit der anderen Studierenden
  • Literatur