Luis Oberste und Armin Heinzl haben ein Forschungspapier über nutzerzentrierte Erklärbarkeit im Gesundheitswesen erfolgreich im Journal „IEEE Transactions on Artificial Intelligence“ veröffentlicht. Der Artikel untersucht den State of the Art des hybriden, d.h. wissensgestützten maschinellen Lernens im Bereich klinischer Informationssysteme. In ihrer Synopse konsolidieren die Autoren Forschungsergebnisse aus den Bereichen Informatik, Mensch-Computer-Interaktion und Wirtschaftsinformatik zusammen, um das Potenzial zur Überwindung rein datengetriebener Erklärungen für medizinische künstliche Intelligenz zu untersuchen. Auf Basis eines Frameworks zur Charakterisierung des in Erklärungen enthaltenen Wissens sowie des Nutzerwissens werden in der Studie die Arten und Kontexte von Wissen erläutert, um auf einen Fit zwischen Ansätzen des hybriden maschinellen Lernens und Nutzern von Erklärungen zu schließen. Die Studie zeigt, dass hybrides maschinelles Lernen ein vielversprechendes Paradigma ist, um einst ausschließlich datengetriebene Systeme zu bereichern und Erklärungen zu liefern, die das formale Verständnis verbessern, nützliches medizinisches Wissen vermitteln und intuitiver sind.Luis Oberste und Armin Heinzl haben ein Forschungspapier über nutzerzentrierte Erklärbarkeit im Gesundheitswesen erfolgreich im Journal „IEEE Transactions on Artificial Intelligence“ veröffentlicht. Der Artikel untersucht den State of the Art des hybriden, d.h. wissensgestützten maschinellen Lernens im Bereich klinischer Informationssysteme. In ihrer Synopse konsolidieren die Autoren Forschungsergebnisse aus den Bereichen Informatik, Mensch-Computer-Interaktion und Wirtschaftsinformatik zusammen, um das Potenzial zur Überwindung rein datengetriebener Erklärungen für medizinische künstliche Intelligenz zu untersuchen. Auf Basis eines Frameworks zur Charakterisierung des in Erklärungen enthaltenen Wissens sowie des Nutzerwissens werden in der Studie die Arten und Kontexte von Wissen erläutert, um auf einen Fit zwischen Ansätzen des hybriden maschinellen Lernens und Nutzern von Erklärungen zu schließen. Die Studie zeigt, dass hybrides maschinelles Lernen ein vielversprechendes Paradigma ist, um einst ausschließlich datengetriebene Systeme zu bereichern und Erklärungen zu liefern, die das formale Verständnis verbessern, nützliches medizinisches Wissen vermitteln und intuitiver sind.